首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier studies have shown a lower degree of lodgement and early survival of tumor cells in muscle than in liver after infusion via the femoral artery and portal vein, respectively. A possible explanation to this difference might be that the tumor cells are mechanically destroyed, and thus die more rapidly in muscle because they enter this capillary network at a much higher flow velocity. In the present study, the effect on early tumor cell (rat fibrosarcoma) survival of a high and a low flow velocity/deformation rate was evaluated in micropore (5 μm) filters, using isotope (Cr51) technique. These experiments were combined with scanning electron microscopic (SEM) analyses. The filter experiments showed no significant differences in the rate of cell death in the filters between tumor cells subjected to high or low deformation rates, and there were no qualitative differences in tumor cell appearance in the SEM study. It is, therefore, concluded that the difference in tumor cell lodgement and survival between muscle and liver is not primarily caused by differences in the rate of cell deformation upon entry of the organ capillary network.  相似文献   

2.
Little is known about the mechanisms responsible for the adaptation and changes in the capillary network of hindlimb unweighting (HU)-induced atrophied skeletal muscle, especially the coupling between functional and structural alterations of intercapillary anastomoses and tortuosity of capillaries. We hypothesized that muscle atrophy by HU leads to the apoptotic regression of the capillaries and intercapillary anastomoses with their functional alteration in hemodynamics. To clarify the three-dimensional architecture of the capillary network, contrast medium-injected rat soleus muscles were visualized clearly using a confocal laser scanning microscope, and sections were stained by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) and with anti-von Willebrand factor. In vivo, the red blood cell velocity of soleus muscle capillaries were determined with a pencil-lens intravital microscope brought into direct contact with the soleus surface. After HU, the total muscle mass, myofibril protein mass, and slow-type myosin heavy chain content were significantly lower. The number of capillaries paralleling muscle fiber and red blood cells velocity were higher in atrophied soleus. However, the mean capillary volume and capillary luminal diameter were significantly smaller after HU than in the age-matched control group. In addition, we found that the number of anastomoses and the tortuosity were significantly lower and TUNEL-positive endothelial cells were observed in atrophied soleus muscles, especially the anastomoses and/or tortuous capillaries. These results indicate that muscle atrophy by HU generates structural alterations in the capillary network, and apoptosis appears to occur in the endothelial cell of the muscle capillaries.  相似文献   

3.
Interstitial flow is an important biophysical cue that can affect capillary morphogenesis, tumor cell migration, and fibroblast remodeling of the extracellular matrix, among others. Current models that incorporate interstitial flow and that are suitable for live imaging lack the ability to perform multiple simultaneous experiments, for example, to compare effects of growth factors, extracellular matrix composition, etc. We present a nine‐chamber radial flow device that allows simultaneous 3D fluidic experiments for relatively long‐term culture with live imaging capabilities. Flow velocity profiles were characterized by fluorescence recovery after photobleaching (FRAP) for flow uniformity and estimating the hydraulic conductivity. We demonstrate lymphatic and blood capillary morphogenesis in fibrin gels over 10 days, comparing flow with static conditions as well as the effects of an engineered variant of VEGF that binds fibrin via Factor XIII. We also demonstrate the culture of contractile fibroblasts and co‐cultures with tumor cells for modeling the tumor microenvironment. Therefore, this device is useful for studies of capillary morphogenesis, cell migration, contractile cells like fibroblasts, and multicellular cultures, all under interstitial flow. Biotechnol. Bioeng. 2010;105: 982–991. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Leukocyte kinetics in the microcirculation   总被引:4,自引:0,他引:4  
The transport of leukocytes in the microcirculation is specific for the type, size, and the rheological and adhesive properties, the microanatomy of the host organ, and the hemodynamics. The adhesion to the endothelium is determined largely by the degree of activation via chemotactic factors. Leukocyte motion differs from that of red cells or platelets in several respects. When granulocytes enter into capillaries, they are deformed just like red cells. Under normal flow conditions, the time to deform at the entry to capillaries is typically 1,000 times larger than for the red cell, leading to temporary obstruction of the capillaries. After entry, granulocytes move with lower velocity than red cells which causes a cell train formation inside the capillary. At the venular side, the granulocyte is displaced from the center stream toward the endothelium by faster moving red cells. This process leads to systematic attachment of the granulocytes to the endothelium. At a reduced perfusion pressure or in the presence of locally elevated levels of chemotactic factors, the granulocytes may not be able to pass through the capillary network, which leads to microvascular obstruction. Organs with a narrow capillary network may thereby become filters for circulating granulocytes. This event is accompanied in many situations with damage to the host organ.  相似文献   

5.
The superficial capillary network of the gastric mucosa can be monitored for red blood cell velocity measurements by a microscopic technique. This network, however, reflects the blood flow in capillaries of more physiological interest, namely those passing by the acid-producing cells and emptying into the superficial network. It is, however, not possible to study these capillaries directly and therefore the problem is to determine in what way and to what degree blood flow measurements in the superficial network reflect the capillary flow of interest. A probabilistic approach where the movements of the red blood cells have been analysed, gives indications of determinable relations between observations on the superficial network flow and the flow passing the acid-producing cells.  相似文献   

6.
The vascular system controls the delivery of nutrients and hormones to muscle, and a number of hormones may act to regulate muscle metabolism and contractile performance by modulating blood flow to and within muscle. This review examines evidence that insulin has major hemodynamic effects to influence muscle metabolism. Whole body, isolated hindlimb perfusion studies and experiments with cell cultures suggest that the hemodynamic effects of insulin emanate from the vasculature itself and involve nitric oxide-dependent vasodilation at large and small vessels with the purpose of increasing access for insulin and nutrients to the interstitium and muscle cells. Recently developed techniques for detecting changes in microvascular flow, specifically capillary recruitment in muscle, indicate this to be a key site for early insulin action at physiological levels in rats and humans. In the absence of increases in bulk flow to muscle, insulin may act to switch flow from nonnutritive to the nutritive route. In addition, there is accumulating evidence to suggest that insulin resistance of muscle in vivo in terms of impaired glucose uptake could be partly due to impaired insulin-mediated capillary recruitment. Exercise training improves insulin-mediated capillary recruitment and glucose uptake by muscle.  相似文献   

7.
A numerical method is implemented for computing blood flow through a branching microvascular capillary network. The simulations follow the motion of individual red blood cells as they enter the network from an arterial entrance point with a specified tube hematocrit, while simultaneously updating the nodal capillary pressures. Poiseuille’s law is used to describe flow in the capillary segments with an effective viscosity that depends on the number of cells residing inside each segment. The relative apparent viscosity is available from previous computational studies of individual red blood cell motion. Simulations are performed for a tree-like capillary network consisting of bifurcating segments. The results reveal that the probability of directional cell motion at a bifurcation (phase separation) may have an important effect on the statistical measures of the cell residence time and scattering of the tube hematocrit across the network. Blood cells act as regulators of the flow rate through the network branches by increasing the effective viscosity when the flow rate is high and decreasing the effective viscosity when the flow rate is low. Comparison with simulations based on conventional models of blood flow regarded as a continuum indicates that the latter underestimates the variance of the hematocrit across the vascular tree.  相似文献   

8.
To quantify the engineering shear constraint on processing, the effect of capillary shear stress (pipe flow) on suspended anchorage-dependent mammalian cells has been investigated. Exposure of cultured rat aortic smooth muscle cells to repeated capillary shear stress (2-120 N m(-2)) causes a decrease in total number of cells, number of intact cells and number of cells able to grow. The optimum wall shear stress for cell survival was found to be 10-50 N m(-2) (flowrate 4-20 mL/min, I.D. 0.45 mm). Cell populations which are able to grow after exposure to shear stress do not exhibit reduced growth rate or altered metabolism.  相似文献   

9.
Hemorheologic events in severe shock   总被引:3,自引:0,他引:3  
Zhao KS 《Biorheology》2005,42(6):463-477
Persistent low perfusion and low blood pressure are the two major events in the pathogenesis of irreversible shock. This review is focused on our recent study on the mechanism of, and a new therapeutic approach to the two events in IS. One of the main causes of persistent low perfusion are leukocyte adhesion on venule walls and plugging in capillaries which comes from the low wall shear stress or shear rate, and high leukocyte-endothelial adhesion force in IS. However, blockade of leukocyte adhesion by monoclonal antibodies against the adhesion molecules can only attenuate the number of sticking WBC in venules, but cannot make an appreciable improvement in capillary reflow and survival rate in IS, because it is difficult for the agents to flow into an obstructed capillary. We have shown that the administration of Polydatin, a crystalline product isolated from a traditional Chinese medicine, can restore the pulse pressure with high survival rate in irreversible shock. With an increase in pulse pressure, and the highly dispersive force resulting from pulsatile blood flow, the stationary blood cells can be pushed away from the obstructed capillary and thus promote capillary reflow. Therefore, enhancement of pulse pressure is a key factor for the treatment of low perfusion in irreversible shock. Hyperpolarization of arteriolar smooth muscle cells occurs in irreversible shock, which inhibits the potential-operated calcium channel and the influx of Ca2+ in arteriolar smooth muscle cells stimulated by norepinephrine, and finally leads to low vascular contractile responsiveness with refractory hypotension in irreversible shock. Activation of the potassium channels K(ATP) and BK(Ca) is involved in arteriolar smooth muscle cells hyperpolarization. In irreversible shock, ATP depletion, intracellular acidosis, ONOO- formation, and enhancement of a calcium spark results in activation of K(ATP) and BK(Ca) and consequent arteriolar smooth muscle cell hyperpolarization. Therefore, a new therapeutic strategy for refractory hypotension was suggested, including blockade of potassium channel activation to reconstitute vasoreactivity and the administration of vasopressors to elevate blood pressure in the treatment of irreversible shock.  相似文献   

10.
Adhesion of circulating tumor cells (CTCs) to the microvessel wall largely depends on the blood hydrodynamic conditions, one of which is the blood viscosity. Since blood is a non-Newtonian fluid, whose viscosity increases with hematocrit, in the microvessels at low shear rate. In this study, the effects of hematocrit, vessel size, flow rate and red blood cell (RBC) aggregation on adhesion of a CTC in the microvessels were numerically investigated using dissipative particle dynamics. The membrane of cells was represented by a spring-based network connected by elastic springs to characterize its deformation. RBC aggregation was modeled by a Morse potential function based on depletion-mediated assumption, and the adhesion of the CTC to the vessel wall was achieved by the interactions between receptors and ligands at the CTC and those at the endothelial cells forming the vessel wall. The results demonstrated that in the microvessel of \(15\,\upmu \hbox {m}\) diameter, the CTC has an increasing probability of adhesion with the hematocrit due to a growing wall-directed force, resulting in a larger number of receptor–ligand bonds formed on the cell surface. However, with the increase in microvessel size, an enhanced lift force at higher hematocrit detaches the initial adherent CTC quickly. If the microvessel is comparable to the CTC in diameter, CTC adhesion is independent of Hct. In addition, the velocity of CTC is larger than the average blood flow velocity in smaller microvessels and the relative velocity of CTC decreases with the increase in microvessel size. An increased blood flow resistance in the presence of CTC was also found. Moreover, it was found that the large deformation induced by high flow rate and the presence of aggregation promote the adhesion of CTC.  相似文献   

11.
The effect of isovolemic hemodilution on the circulation of red blood cells (RBCs) in the cerebrocortical capillary network was studied by intravital videomicroscopy with use of a closed-cranial-window technique in the rat. Velocity and supply rate of RBCs were measured by tracking the movement and counting the number of fluorescently labeled cells. Arterial blood was withdrawn in increments of 2 ml and replaced by serum albumin. Arterial blood pressure was maintained constant with an infusion of methoxamine. Both velocity and supply rate of RBCs increased, by approximately equal amounts, as arterial hematocrit was reduced from 44 to 15%. The maximum increase in RBC velocity was 4.6 and in RBC supply rate was 5.2 times the baseline value. Calculated lineal density of RBC, an index of capillary hematocrit, did not change with hemodilution. The results suggest that RBC flow and oxygen supply in the cerebral capillary network are maintained during isovolemic hemodilution. The "optimal hematocrit" is as low as 15%.  相似文献   

12.
To investigate the mechanical mechanisms behind tumor cell arrest in the microvasculature, we injected fluorescently labeled human breast carcinoma cells or similarly sized rigid beads into the systemic circulation of a rat. Their arrest patterns in the microvasculature of mesentery were recorded and quantified. We found that 93 % of rigid beads were arrested either at arteriole–capillary intersections or in capillaries. Only 3 % were at the capillary–postcapillary venule intersections and in postcapillary venules. In contrast, most of the flexible tumor cells were either entrapped in capillaries or arrested at capillary or postcapillary venule–postcapillary venule intersections and in postcapillary venules. Only 12 % of tumor cells were arrested at the arteriole–capillary intersections. The differential arrest and adhesion of tumor cells and microbeads in the microvasculature was confirmed by a $\chi ^{2}$ test ( $p<0.001$ ). These results demonstrate that mechanical trapping was responsible for almost all the arrest of beads and half the arrest of tumor cells. Based on the measured geometry and blood flow velocities at the intersections, we also performed a numerical simulation using commercial software (ANSYS CFX 12.01) to depict the detailed distribution profiles of the velocity, shear rate, and vorticity at the intersections where tumor cells preferred to arrest and adhere. Simulation results reveal the presence of localized vorticity and shear rate regions at the turning points of the microvessel intersections, implying that hemodynamic factors play an important role in tumor cell arrest in the microcirculation. Our study helps elucidate long-debated issues related to the dominant factors in early-stage tumor hematogenous metastasis.  相似文献   

13.
The heart muscle is nourished by a complex system of blood vessels that make up the coronary circulation. Here we show that the design of the coronary circulation has a functional hierarchy. A full anatomic model of the coronary arterial tree, containing millions of blood vessels down to the capillary vessels, was simulated based on previously measured porcine morphometric data. A network analysis of blood flow through every vessel segment was carried out based on the laws of fluid mechanics and appropriate boundary conditions. Our results show an abrupt change in cross-sectional area that demarcates the transition from epicardial (EPCA) to intramyocardial (IMCA) coronary arteries. Furthermore, a similar pattern of blood flow was observed with a corresponding transition from EPCA to IMCA. These results suggest functional differences between the two types of vessels. An additional abrupt change occurs in the IMCA in relation to flow velocity. The velocity is fairly uniform proximal to these vessels but drops significantly distal to those vessels toward the capillary branches. This finding suggests functional differences between large and small IMCA. Collectively, these observations suggest a novel functional hierarchy of the coronary vascular tree and provide direct evidence of a structure-function relation.  相似文献   

14.
Nitric oxide (NO) plays a key role in regulation of vascular tone and blood flow. In the microcirculation blood flow is strongly dependent on red blood cells (RBC) deformability. In vitro NO increases RBC deformability. This study hypothesized that NO increases RBC velocity in vivo not only by regulating vascular tone, but also by modifying RBC deformability. The effects of NO on RBC velocity were analysed by intra-vital microscopy in the microcirculation of the chorioallantoic membrane (CAM) of the avian embryo at day 7 post-fertilization, when all vessels lack smooth muscle cells and vascular tone is not affected by NO. It was found that inhibition of enzymatic NO synthesis and NO scavenging decreased intracellular NO levels and avian RBC deformability in vitro. Injection of a NO synthase-inhibitor or a NO scavenger into the microcirculation of the CAM decreased capillary RBC velocity and deformation, while the diameter of the vessels remained constant. The results indicate that scavenging of NO and inhibition of NO synthesis decrease RBC velocity not only by regulating vascular tone but also by decreasing RBC deformability.  相似文献   

15.
Using high-resolution intravital charge-coupled device video microscopy, we visualized the epicardial capillary network of the beating canine heart in vivo to elucidate its functional role under control conditions, during reactive hyperemia (RH), and during intracoronary adenosine administration. The pencil-lens video-microscope probe was placed over capillaries fed by the left anterior descending artery in atrioventricular-blocked hearts of open-chest, anesthetized dogs paced at 60-90 beats/min (n = 17). In individual capillaries under control conditions, red blood cell flow was predominant during systole or diastole, indicating that the watershed between diastolic arterial and systolic venous flows is located within the capillaries. Capillary flow increased during RH and reached a peak flow velocity (2.1 +/- 0.6 mm/s), twice as high as control (1.2 +/- 0.5 mm/s), with enhancement of intercapillary cross-connection flow and enlargement of diameter (by 17%). With adenosine, capillary flow velocity significantly increased (1.8 +/- 0.7 mm/s). However, the increase in volumetric capillary flow with adenosine estimated from red blood cell velocity and diameter was less than the increase in arterial flow, whereas that during RH was nearly equivalent to the increase in arterial flow. There was a time lag of approximately 1.5 s for refilling of capillaries during RH, indicating their function as capacitance vessels. In conclusion, the coronary capillary network functions as 1) the major watershed between diastolic-dominant arterial and systolic-dominant venous flows, 2) a capacitor, and 3) a significant local flow amplifier and homogenizer of blood supply during RH, but with adenosine the increase in capillary flow velocity was less than the increase in arterial flow.  相似文献   

16.
A restructuring of the capillary bed—from the embryonic structure with a three-dimensional network of wide and long protocapillaries to the mature structure with high density of thin and short capillaries along the fibers—has been demonstrated in the chick skeletal muscle on embryonic days 10–19 by morphometric analysis. In this case, the specific blood flow and capillary luminal area per cm3 of the muscle remained unaltered, while the blood volume in it significantly dropped. The response of muscle circulation to nitroprusside (increase) and noradrenaline (decrease) appeared in 19-day-old embryos, but this response could develop only under conditions of initially low or high blood flow, respectively. We propose that the arterial trunk lumen area to the total capillary lumen area remains constant as the intraorganic circulation is formed, which provides for the required linear blood velocity in capillaries.  相似文献   

17.
Three-dimensional computational modeling and simulation are presented on the adhesive rolling of deformable leukocytes over a P-selectin coated surface in parabolic shear flow in microchannels. The computational model is based on the immersed boundary method for cell deformation and Monte Carlo simulation for receptor/ligand interaction. The simulations are continued for at least 1 s of leukocyte rolling during which the instantaneous quantities such as cell deformation index, cell/substrate contact area, and fluid drag remain statistically stationary. The characteristic ‘stop-and-go’ motion of rolling leukocytes, and the ‘tear-drop’ shape of adherent leukocytes as observed in experiments are reproduced by the simulations. We first consider the role of cell deformation and cell concentration on rolling characteristics. We observe that compliant cells roll slower and more stably than rigid cells. Our simulations agree with previous in vivo observation that the hydrodynamic interactions between nearby leukocytes affect cell rolling, and that the rolling velocity decreases inversely with the separation distance, irrespective of cell deformability. We also find that cell deformation decreases, and the cells roll more stably with reduced velocity fluctuation, as the cell concentration is increased. However, the effect of nearby cells on the rolling characteristics is found to be more significant for rigid cells than compliant cells. We then address the effect of cell deformability and rolling velocity on the flow resistance due to, and the fluid drag on, adherent leukocytes. While several earlier computational works have addressed this problem, two key features of leukocyte adhesion, such as cell deformation and rolling, were often neglected. Our results suggest that neglecting cell deformability and rolling velocity may significantly overpredict the flow resistance and drag force. Increasing the cell concentration is shown to increase the flow resistance and reduce the fluid drag. The reduced drag then results in slower and more stable rolling of the leukocytes with longer pause time and shorter step distance. But the increase/decrease in the flow resistance/fluid drag due to the increase in the cell concentration is observed to be more significant in case of rigid cells than compliant cells.  相似文献   

18.
Skeletal muscle blood flow is reduced and O(2) extraction is increased at rest in chronic heart failure (CHF). Knowledge of red blood cell (RBC) flow distribution within the capillary network is necessary for modeling O(2) delivery and exchange in this disease. Intravital microscopy techniques were used to study the in vivo spinotrapezius muscle microcirculation in rats with CHF 7 wk after myocardial infarction and in sham-operated controls (sham). A decrease in mean muscle fiber width from 51.3 +/- 1.9 microm in sham to 42.6 +/- 1.4 microm in CHF rats (P < 0.01) resulted in an increased lineal density of capillaries in CHF rats (P < 0.05). CHF reduced (P < 0.05) the percentage of capillaries supporting continuous RBC flow from 87 +/- 5 to 66 +/- 5%, such that the lineal density of capillaries supporting continuous RBC flow remained unchanged. The percentage of capillaries supporting intermittent RBC flow was increased in CHF rats (8 and 27% in sham and CHF, respectively, P < 0.01); however, these capillaries contributed only 2.3 and 3.3% of the total RBC flux in sham and CHF rats, respectively. In continuously RBC-perfused capillaries, RBC velocity (252 +/- 20 and 144 +/- 9 microm/s in sham and CHF, respectively, P < 0.001) and flux (21.4 +/- 2.4 and 9.4 +/- 1.1 cells/s in sham and CHF, respectively, P < 0.01) were markedly reduced in CHF compared with sham rats. Capillary "tube" hematocrit remained unchanged (0.22 +/- 0.02 and 0.19 +/- 0.02 in sham and CHF, respectively, P > 0.05). We conclude that CHF causes spinotrapezius fiber atrophy and reduces the number of capillaries supporting continuous RBC flow per fiber. Within these capillaries supporting continuous RBC flow, RBC velocity and flux are reduced 45-55%. This decreases the potential for O(2) delivery but enhances fractional O(2) extraction by elevating RBC capillary residence time. The unchanged capillary tube hematocrit suggests that any alterations in muscle O(2) diffusing properties in CHF are mediated distal to the RBC.  相似文献   

19.
The purpose of these studies is to examine the early effects of chronic tobacco smoke exposure on vascular dynamics in the mesenteric microcirculation. Female rats were exposed daily to tobacco smoke from five reference cigarettes for a period of 2 mo. At the end of this period the smoke-treated rats had gained 12 g less than sham-treated controls, and arterial blood pressure in the smoke-treated animals was slightly less than pressure in the sham-treated animals. These are characteristic effects of tobacco smoke exposure on rats. Following the treatment period, red blood cell (RBC) velocity in single mesenteric capillaries and microvascular pressures in arterioles and venules were measured in accordance to established methods. There was no significant difference in pressure distribution on the arterial side of the mesenteric vascular network, but pressure in the venules of the smoke-treated animals was significantly higher than that of the sham-treated group. In association with the higher venular pressure in the smoke-treated animals, capillary RBC velocity (an index of capillary flow) was significantly lower. The reduction in velocity was in proportion to the decrease in pressure drop (arteriole-venule) across the capillary network.  相似文献   

20.
Testing in vitro is an alternative to animal experimentation. The capillary pressure microinjection technique is a supporting technology for efficient in vitro testing. The main benefit of the technique is the possibility of injecting large molecules into a single living cell. The ultimate goal of the research discussed in this paper is to increase the cell survival rate in capillary pressure microinjection. A method to reliably evaluate cell survival rate is therefore needed. A three-phase evaluation process is presented in this paper. The first phase determines the success rate of the injection capillary to penetrate the cell membrane. The second phase studies the success rate of delivering the injection substance inside the cell, while the third phase studies cell survival after the microinjection. In addition to the three-phase evaluation process, this paper describes the initial results of penetration and injection tests performed by using a semi-automatic capillary pressure microinjection system developed by the research group. Three adherent cell lines, namely, retinal pigment epithelial cells, MCF-7 human breast cancer cells and SH-SY5Y neuroblastoma cells, were used in the experiments. The results of the penetration tests show that the average success rate of penetrating the cell membrane using the micromanipulator was 87%. The goal of the injection tests was to demonstrate the successful microinjection of living cells and to study the injection success rate. Fluorescein dextran was injected into MCF-7 cells, and preliminary results showed an injection success rate of 49%. In the survival tests, the neuronal cells were microinjected with KCl. During long-term observation after the microinjection, the microinjected cells first decreased their adhesion to the plate, but later adhered to the bottom of the plate and even grew some dendrites. In the next phase of the study, more tests will be performed in order to obtain a statistically reliable value for the survival rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号