首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Many hypertonic bacteria, plants, marine animals, and the mammalian renal medulla are protected from the deleterious effects of high intracellular concentrations of electrolytes by accumulating high concentrations of the nonperturbing osmolyte betaine. When kidney-derived Madin-Darby canine kidney (MDCK) cells are cultured in hypertonic medium, they accumulate betaine to 1,000 times its medium concentration. This results from induction by hypertonicity of high rates of betaine transport into cells. We have isolated a cDNA (BGT-1) encoding a renal betaine transporter by screening an MDCK cell cDNA library for expression of a betaine transporter in Xenopus oocytes. The cDNA encodes a single protein of 614 amino acids, with an estimated molecular weight of 69 kDa. The deduced amino acid sequence exhibits highly significant sequence and topographic similarity to brain gamma-amino-n-butyric acid (GABA) and noradrenaline transporters, suggesting that the renal BGT-1 is a member of the brain GABA/noradrenaline transporter gene family. Expression in oocytes indicates that the BGT-1 protein has both betaine and GABA transport activities that are Cl(-)- as well as Na(+)-dependent and functionally similar to betaine and GABA transport in MDCK cells. Northern hybridization indicates that transporter mRNA is localized to the kidney medulla and is induced in MDCK cells by hypertonicity.  相似文献   

3.
4.
Madin-Darby canine kidney (MDCK) cells accumulate glycinebetaine via Na(+)-dependent transport in response to hypertonic stress. When extracellular tonicity is increased by the addition of NaCl, Vmax for glycinebetaine transport increases without an associated change in Km, consistent with an increase in the number of functioning transporters. To test whether increased transport activity results from increased gene expression, we injected poly(A)+ RNA (mRNA) from MDCK cells into Xenopus oocytes and assayed for glycinebetaine uptake in ovo. RNA-induced Na(+)-dependent uptake is observed in oocytes injected with mRNA from cells exposed to high extracellular NaCl, but not in oocytes injected with either water or mRNA from cells maintained in isotonic medium. Unfractionated mRNA induces glycinebetaine uptake in ovo at a rate which is approximately 3-fold higher than in water-injected controls. Size-fractionated mRNA (median size 2.8 kilobases) induces uptake at a rate which is approximately 7-fold higher than controls. Such RNA-induced transport activity in ovo is consistent with heterologous expression of Na(+)/glucinebetaine cotransporters encoded by renal mRNA. Increased transporter mRNA in cells exposed to hypertonicity probably underlies the pattern of expression observed in ovo. This can account for the observed rise in MDCK cell glycinebetaine transport during hypertonic stress.  相似文献   

5.
We obtained cDNA chimeras between Na/glucose cotransporter (SGLT1) and the homologous Na(+)/myo-inositol cotransporter (SMIT) by creating random chimeras in plasmids. Of 12 chimeras, two were functional when expressed in Xenopus laevis oocytes but, upon sequencing, only one of them (C1) produced an actual chimeric protein. In C1, the first 69 amino acids of SGLT1 were replaced by the corresponding 50 amino acids of SMIT. C1 transports the same sugars as does SGLT1. C1's affinity for all sugar substrates was systematically increased by a factor of 3.3+/-0.4 but the V(max) was diminished by a factor of 15-40. In contrast, the cotransport affinity for Na(+) was unchanged. The surface expression of C1 was one seventh that of SGLT1, which explains part of the reduced V(max) and implies a significant reduction in turnover rate. N-terminal truncated constructs of SGLT1 cDNA showed that deleting amino acids 2-14 does not affect cotransporter activity, but that the pentapeptide T(14)RPVET(19) is important for normal levels of SGLT1 current. The main result of a kinetic analysis of the systematic increase in apparent affinity for sugars, together with the intact Na apparent affinity, suggests enhanced access to the sugar binding site in C1.  相似文献   

6.
Previous studies have shown that two kinetically and genetically distinct Na+/glucose cotransporters exist in mammalian kidney. We have recently cloned and sequenced one of the rabbit renal Na+/glucose cotransporters (SGLT1) and have found that it is identical in sequence to the intestinal Na+/glucose cotransporter. Northern blots showed that SGLT1 mRNA was found predominantly in the outer medulla of rabbit kidney. Injection of mRNA from outer medulla and outer cortex into Xenopus oocytes resulted in equal expression of Na(+)-dependent sugar uptake, indicating that the outer cortex sample contained mRNA encoding both SGLT1 and a second Na+/glucose cotransporter. Western blots using antipeptide antibodies against SGLT1 showed that the SGLT1 protein is more abundant in outer medulla than outer cortex. However, brush border membrane vesicles prepared from outer cortex had a greater capacity for Na(+)-dependent glucose transport, indicating the presence of a second transporter in the vesicles from outer cortex. It appears that the cloned renal Na+/glucose cotransporter, SGLT1, is the 'high affinity, low capacity' transporter found predominantly in outer medulla. There is evidence that a second transporter, the 'low affinity, high capacity' transporter, is in outer cortex. Finally, the cDNA and protein sequences of the two renal Na+/glucose cotransporters are predicted to differ by more than 20%.  相似文献   

7.
Complementary DNAs encoding seven different proteins related to the rabbit intestinal Na+/glucose cotransporter, SGLT1, were isolated from a rabbit renal cDNA library at relatively high stringency. The messages for RK-B to RK-F were single mRNA species at 2.3 kilobases (kb) in heart and kidney. The message for RK-A was 4 kb and was found in brain, lung, intestine, liver, and kidney. RK-I mRNA was approximately 3 kb and was found in all tissues tested. The most abundant clone, RK-C, constituted nucleotides 66-2150 of the sodium-nucleoside cotransporter, SNST1. The 672-amino acid protein encoded by SNST1 is 61% identical and 80% similar in sequence to SGLT1. Expression of SNST1c in Xenopus oocytes resulted in nucleoside-stimulated 22Na uptake and sodium-dependent [3H]uridine uptake. The uptake of [3H]uridine was inhibited by a range of nucleosides, including the anti-human immunodeficiency virus drug, dideoxycytidine. The results of this study show that there is a family of SGLT1-related proteins found in a wide variety of tissues and that one of these is a Na+/nucleoside cotransporter.  相似文献   

8.
Rat kidney cortex mesangial cells (MES) and Chinese hamster ovary cells (CHO) responded to hypertonicity (600 mosmol/kg) in culture by accumulating sorbitol. The accumulation of sorbitol was due to increased aldose reductase (AR) activity, apparently brought about by increased levels of AR mRNA and protein. The levels of AR mRNA increased approximately 60-fold in MES cells and 30-fold in CHO cells by 24 h in culture media (300 mosmol/kg supplemented with 150 mM NaCl, 600 mosmol/kg total). AR activity also markedly increased (14- to 16-fold above control), but MES took 4 days and CHO 6 days to reach this maximum. Other osmolytes, raffinose and sorbitol (at concentrations of 250 to 300 mM) elicited the same response as that of 150 mM NaCl. These data show that AR expression is induced in MES and CHO cells under hypertonic conditions. Of special interest is the induction of large amounts of AR in rat kidney cortex mesangial cells, a target tissue of diabetes and a site where excessive accumulation of sorbitol is suspected to be a critical factor in diabetic nephropathy.  相似文献   

9.
Summary During antidiuresis cells in the renal inner medulla contain large amounts of sorbitol, myo-inositol, glycerophosphorylcholine and betaine to adjust the intracellular osmolality to the extracellular hyperosmolality. Although the accumulation of these four major organic osmolytes in the inner medulla of the dehydrated animal has been a consistent finding, the role of another class of organic osmolytes, amino acids, in osmoregulation in the kidney remains controversial. In the present study, renal responses of four major osmolytes and amino acids to dehydration were investigated using two HPLC systems. Taurine levels were significantly higher in the inner medulla of the dehydrated rats as compared with the control rats, and increased monotonically from the cortex to the inner medulla along the corticopapillary axis in the dehydrated rats. As for four major osmolytes, we confirm previously reported patterns in antidiuresis in greater detail. In conclusion, not only the four major osmolytes but taurine also plays a salient role in the osmoregulation in the kidney.  相似文献   

10.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

11.
Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol, and taurine. However, the massive uptake of compatible osmolytes is a slow process compared with other defense mechanisms related to oxidative or heat stress. This is especially critical for cycling cells as they have to double their volume while keeping a hospitable intracellular environment for the molecular machineries. Here we propose that clustered cells can accelerate the supply of compatible osmolytes to cycling cells via the transit, mediated by gap junctions, of compatible osmolytes from arrested to cycling cells. Both experimental results in epithelial normal rat kidney cells and theoretical estimations show that gap junctions indeed play a key role in cell adaptation to chronic hypertonicity. These results can provide basis for a better understanding of the functions of gap junctions in osmoregulation not only for the kidney but also for many other epithelia. In addition to this, we suggest that cancer cells that do not communicate via gap junctions poorly cope with hypertonic environments thus explaining the rare occurrence of cancer coming from the kidney medulla.  相似文献   

12.
13.
14.
The mechanism by which COX2 inhibition decreases renal cell survival is poorly understood. In the present study we examined the effect of COX2 activity on organic osmolyte accumulation in renal medulla and in cultured mouse renal medullary interstitial cells (MMICs) and its role in facilitating cell survival. Hypertonicity increased accumulation of the organic osmolytes inositol, sorbitol, and betaine in cultured mouse medullary interstitial cells. Pretreatment of MMICs with a COX2-specific inhibitor (SC58236, 10 micromol/liter) dramatically reduced osmolyte accumulation (by 79 +/- 9, 57 +/- 12, and 96 +/- 10% for inositol, sorbitol, and betaine respectively, p < 0.05). Similarly, 24 h of dehydration increased inner medullary inositol, sorbitol, and betaine concentrations in vivo by 85 +/- 10, 197 +/- 28, and 190 +/- 24 pmol/microg of protein, respectively, but this increase was also blunted (by 100 +/- 5, 66 +/- 15, and 81 +/- 9% for inositol, sorbitol, and betaine, respectively, p < 0.05) by pretreatment with an oral COX2 inhibitor. Dehydrated COX2-/- mice also exhibited an impressive defect in sorbitol accumulation (88 +/- 9% less than wild type, p < 0.05) after dehydration. COX2 inhibition (COX2 inhibitor-treated or COX2-/- MMICs) dramatically reduced the expression of organic osmolyte uptake mechanisms including betaine (BGT1) and sodium-myo-inositol transporter and aldose reductase mRNA expression under hypertonic conditions. Importantly, preincubation of COX2 inhibitor-treated MMICs with organic osmolytes restored their ability to survive hypertonic stress. In conclusion, osmolyte accumulation in the kidney inner medulla is dependent on COX2 activity, and providing exogenous osmolytes reverses COX2-induced cell death. These findings may have implications for the pathogenesis of analgesic nephropathy.  相似文献   

15.
16.
N Sauer  W Tanner 《FEBS letters》1989,259(1):43-46
The cDNA coding for the inducible H+/hexose cotransporter of Chlorella kessleri has been cloned and sequenced. It was isolated by differential screening of a cDNA library prepared from glucose-induced cells. The increase in expression of the gene correlates quantitatively with the increase in uptake activity due to induction; it is not expressed in a hexose transport mutant. An open reading frame allows for a membrane protein of 533 amino acids with a relative molecular mass of 57 kDa. This protein is highly homologous to the human and rat glucose transporters catalyzing facilitated diffusion and to the bacterial H+/pentose cotransporters. It is not related to the H+/lactose cotransporter of E. colli and to the mammalian Na+/glucose cotransporter.  相似文献   

17.
Differential display polymerase chain reaction has been used to isolate genes regulated in vascular endothelial cells by the angiogenic factor vascular endothelial cell growth factor (VEGF). Analysis of one of the bands consistently up-regulated by VEGF led us to the identification of a cDNA from a human umbilical vein endothelial cell library that is 77% identical to the human K+-Cl- cotransporter1 (KCC1). We have referred to the predicted protein as K+-Cl- cotransporter 3 (KCC3). Hydrophobicity analysis of the KCC3 amino acid sequence showed an almost identical pattern to KCC1, suggesting 12 membrane-spanning segments, a large extracellular loop with potential N-glycosylation sites, and cytoplasmic N- and C-terminal regions. The KCC3 mRNA was highly expressed in brain, heart, skeletal muscle, and kidney, showing a distinct pattern and size from KCC1 and KCC2. The KCC3 mRNA level in endothelial cells increased on treatment with VEGF and decreased with the proinflammatory cytokine tumor necrosis factor alpha, whereas KCC1 mRNA levels remained unchanged. Stable overexpression of KCC3 cDNA in HEK293 cells produced a glycoprotein of approximately 150 kDa, which was reduced to 120 kDa by glycosidase digestion. An increased initial uptake rate of 86Rb was seen in clones with high KCC3 expression, which was dependent on extracellular Cl- but not Na+ and was inhibitable by the loop diuretic agent furosemide. The KCC3 genomic localization was shown to be 15q13 by fluorescence in situ hybridization. Radiation hybrid analysis placed KCC3 within an area associated with juvenile myoclonic epilepsy. These results suggest KCC3 is a new member of the KCC family that is under distinct regulation from KCC1.  相似文献   

18.
Cells derived from the simian kidney, COS-7 cells, were transfected with a eucaryotic expression vector (pEUK-C1) containing the clone for the rabbit intestinal Na+/glucose cotransporter. Expression was monitored after transfection with lipofectin by measuring the initial rate of alpha-methylglucopyranoside (MeGlc) uptake. Cells transfected with vector containing the cDNA for the Na+/glucose cotransporter expressed Na(+)-dependent MeGlc transport. Neither control cells nor cells transfected with vector lacking cloned cDNA expressed the cotransporter. Na(+)-dependent MeGlc uptake into transfected cells was saturable (Km 150 microM), phlorizin-sensitive (Ki 11 microM), and inhibited by sugar analogs (D-glucose greater than MeGlc greater than D-galactose greater than 3-O-methyl-D-glucoside greater than D-allose much greater than L-glucose). Europium was able to mimic Na+ in driving MeGIC uptake. Finally, tunicamycin, an inhibitor of asparagine-linked glycosylation, inhibited the expression of Na(+)-dependent MeGlc transport 80%. We conclude that the rabbit intestinal Na+/glucose cotransporter expressed in COS-7 cell exhibits very similar kinetic properties to that in the native brush border and to that expressed in Xenopus oocytes. In addition, N-linked glycosylation appears to be important for functional expression of this membrane protein.  相似文献   

19.
Xenopus and Cynops oocytes were injected with exogenous mRNA prepared from rat small intestine and kidney and their electrical responses to amino acids were measured by both the current clamped and the voltage clamped methods. Oocytes injected with mRNA of rat small intestine showed a depolarization response to several neutral and basic amino acids, and almost no response to acidic amino acids. The responses to amino acids increased with incubation time after injection of mRNA, and followed Michaelis-Menten type kinetics. The responses were dependent on both Na+ concentration and membrane potential, and were inactivated by a sulfhydryl reagent, 5,5-dithiobis(2-nitrobenzoate). These results are interpreted as due to the expression of Na+/amino acid cotransporter(s) in oocytes injected with rat small intestine mRNA. On the other hand, the oocyte injected with rat kidney mRNA showed a hyperpolarization response to neutral amino acids, a depolarization response to basic ones, and almost no response to acidic ones in frog Ringer solution. These responses were independent of Na+ concentration and followed Michaelis-Menten type kinetics. These amino acid response characteristics in oocytes injected with rat kidney mRNA are interpreted as due to the expression of facilitated diffusion carrier protein(s) (uniporter) of amino acids in the oocyte.  相似文献   

20.
A cDNA clone encoding a rabbit ileal villus cell Na+/H+ exchanger was isolated and its complete nucleotide sequence was determined. The cDNA is 4 kb long and contains 322 bp of 5'-untranslated region, 2451 bp of open reading frame and 1163 bp of 3'-untranslated area, with 70%, 91% and 40% identity to the human sequence, respectively. Amino acid sequence deduced from the longest open reading frame indicated a protein of 816 residues (predicted Mr 90,716) which exhibits 95% amino acid identity to the human Na+/H+ exchanger. The two putative glycosylation sites in the human Na+/H+ exchanger are conserved in this protein, suggesting that it is a glycoprotein. Stable transfection of the cDNA into an Na+/H+ exchanger deficient fibroblast cell line, established Na+/H+ exchange. The Na+/H+ exchanger was stimulated by serum and a phorbol ester but not by 8-Br-cAMP. In Northern blot analysis, the cDNA hybridized to a 4.8 kb message in rabbit ileal villus cells, kidney cortex, kidney medulla, adrenal gland, brain and descending colon and to a 5.2 kb message in cultured human colonic cancer cell lines, HT29-18 and Caco-2. In immunoblotting, a polyclonal antibody raised against a fusion protein of beta-galactosidase and the C-terminal 158 amino acids of the human Na+/H+ exchanger identified a rabbit ileal basolateral membrane protein of 94 kd and only weakly interacted with the ileal brush border membrane. In immunocytochemical studies using ileal villus and crypt epithelial cells, the same antibody identified basolateral and not brush border epitopes. Restriction analysis of genomic DNA with a 462 bp PstI-AccI fragment of the rabbit Na+/H+ exchanger strongly suggests the existence of closely related Na+/H+ exchanger genes. The near identity of the basolateral Na+/H+ exchanger and the human Na+/H+ exchanger plus the ubiquitous expression of this message suggests that the ileal basolateral Na+/H+ exchanger is the 'housekeeping' Na+/H+ exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号