共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the properties of ethenoadenosine nucleotides bound or trapped at the active site of myosin subfragment 1 总被引:2,自引:0,他引:2
The fluorescent nucleotide analogue of ADP, 1,N6-ethenoadenosine diphosphate (epsilon ADP), has been used to probe the active site of myosin subfragment 1 (SF1). The Mg complex of ADP was shown to be trapped stoichiometrically at the active site by a variety of thiol cross-linking agents having sulfur to sulfur spanning lengths of 2-14 A. Previous studies [Wells, J. A., & Yount, R. G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970] had suggested ADP was trapped by direct closure of a postulated active site cleft by cross-linking two activity critical thiols, SH1 and SH2. This model was tested by measuring the polarization of trapped and reversibly bound epsilon ADP, the off-rate of trapped epsilon ADP, and the solute quencher accessibility of trapped epsilon ADP on SF1 modified with thiol cross-linking agents of different spanning lengths. The lack of correlation of all of these properties with the length of the cross-linking span suggests that trapping occurs by indirect stabilization of a conformation favoring bound nucleotides rather than by sterically preventing the release of nucleotide. Measurement of the fluorescent properties of epsilon ADP bound to SF1 vs. epsilon ADP free gave a 20% increase in emission intensity, a 7-nm blue shift in the emission maximum, and a 70% increase in the absorbance at the excitation wavelength (330 nm). Trapping of epsilon ADP by the thiol cross-linking agent p-phenylenedimaleimide gave a further 24% increase in emission intensity. This change was shown to be the result of an increase in absorbance of trapped epsilon ADP at 330 nm rather than an increase in the quantum yield.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
S Highsmith 《The Journal of biological chemistry》1976,251(20):6170-6172
The effects of selected nucleotides (N) on the binding of myosin subfragment 1 (S-1) and pure F-actin (A) were measured by time-resolved fluorescence depolarization for 0.15 M KCl, pH 7.0 at 4 degrees. The association constants K'A, KN, and K'N in the scheme (see article), were determined for the magnesium salts of ADP, adenyl-5'-yl imidodiphosphate AMP-P(NH)P, and PPi. The nucleotide binding site on S-1 was "mapped" with respect to its interaction on the actin binding site. The subsites were the beta- and gamma-phosphoryl groups of ATP bind had the largest effects. A quantitative measure of the interaction, the interaction free energy, was defined as -RT ln (KA/K'A). For ADP, K'A was 2.7 X 10(5) M-1 and the interaction free energy was -4.67 kJ M-1. For AMP-P(NH)P and PPi it was much larger. A ternary complex was shown to exist for ADP, S-1, and actin in the presence of Mg2+ and evidence from AMP-P(NH)P and PPi measurements indicated that ATP also likely forms a ternary complex. The mechanism of (S-1)-actin dissociation is discussed in light of these results. 相似文献
3.
P Chaussepied 《Biochemistry》1989,28(23):9123-9128
Using a complementary sequence or antipeptide to selectively neutralize the stretch of residues 633-642 of skeletal myosin heavy chain, we recently demonstrated that this segment is an actin binding site operating in the absence as in the presence of nucleotide and that this stretch 633-642 is not part of the nucleotide binding site [Chaussepied & Morales (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471-7475]. In the present study, we determined that the covalent cross-linking of the antipeptide to the stretch 633-642 [induced by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide] does not alter the overall polypeptide conformation since no changes were observed on the far-ultraviolet CD spectra and thiol reactivity measurements. The presence of the antipeptide did not influence significantly the enhancement of tryptophan fluorescence induced by ATP.Mg2+ or ADP.Mg2+ binding to the myosin head (S1) nor did it on the ATP.Mg2+-induced tryptic proteolysis of S1 heavy chain. Moreover, fluorescence quenching studies, using acrylamide and the analogue, 1,N6-ethenoadenosine 5'-triphosphate, indicated that the nucleotide bound to antipeptide-S1 complex has an accessibility to the solute quencher close to that observed when it is bound to native S1. Additionally, neutralization of the stretch 633-642 of the S1 heavy chain by the antipeptide did not influence the stabilization of the Mg2+.ADP.sodium vanadate-S1 complex. On the other hand, experiments using antipeptide-induced protection against the cleavage of the S1 heavy chain by Arg-C protease demonstrated that the presence of Mg2+.ADP.sodium vanadate in the S1 nucleotide site did not affect the interaction of the antipeptide with the stretch of residues 633-642.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Emoke Bódis Krisztina Szarka Miklós Nyitrai Béla Somogyi 《European journal of biochemistry》2003,270(24):4835-4845
Atomic models of the myosin motor domain with different bound nucleotides have revealed the open and closed conformations of the switch 2 element [Geeves, M.A. & Holmes, K.C. (1999) Annu. Rev. Biochem.68, 687-728]. The two conformations are in dynamic equilibrium, which is controlled by the bound nucleotide. In the present work we attempted to characterize the flexibility of the motor domain in the open and closed conformations in rabbit skeletal myosin subfragment 1. Three residues (Ser181, Lys553 and Cys707) were labelled with fluorophores and the probes identified three fluorescence resonance energy transfer pairs. The effect of ADP, ADP.BeFx, ADP.AlF4- and ADP.Vi on the conformation of the motor domain was shown by applying temperature-dependent fluorescence resonance energy transfer methods. The 50 kDa lower domain was found to maintain substantial rigidity in both the open and closed conformations to provide the structural basis of the interaction of myosin with actin. The flexibility of the 50 kDa upper domain was high in the open conformation and further increased in the closed conformation. The converter region of subfragment 1 became more rigid during the open-to-closed transition, the conformational change of which can provide the mechanical basis of the energy transduction from the nucleotide-binding pocket to the light-chain-binding domain. 相似文献
5.
Fluorescence resonance energy transfer measurements have been made between Cys-374 on actin and Cys-177 on the alkali light chain of myosin subfragment 1 (S1) using several pairs of donor-acceptor chromophores. The labeled light chain was exchanged into subfragment 1 and the resulting fluorescently labeled subfragment 1 isolated by ion-exchange chromatography on SP-Trisacryl. The efficiency of energy transfer was measured by steady-state fluorescence in a strong binding complex of acto-S1 and found to represent a spatial separation between the two probes of 5.6-6.3 nm. The same measurements were then made with weak binding acto-S1 complexes generated in two ways. First, actin was complexed with p-phenylenedimaleimide-S1, a stable analogue of S1-adenosine 5'-triphosphate (ATP), obtained by cross-linking the SH1 and SH2 heavy-chain thiols of subfragment 1 [Greene, L. E., Chalovich, J. M., & Eisenberg, E. (1986) Biochemistry 25, 704-709]. Large increases in transfer efficiency indicated that the two probes had moved closer together by some 3 nm. Second, weak binding complexes were formed between subfragment 1 and actin in the presence of the regulatory proteins troponin and tropomyosin, the absence of calcium, and the presence of ATP [Chalovich, J. M., & Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437]. The measured efficiency of energy transfer again indicated that the distance between the two labeled sites had moved closer by about 3 nm. These data support the idea that there is a considerable difference in the structure of the acto-S1 complex between the weakly and strongly bound states. 相似文献
6.
The effect of caldesmon on the conformational changes of F-actin caused by myosin subfragment 1 (S-1) binding was studied, using the polarized microfluorimetry method. It was demonstrated that the polarized fluorescence of rhodaminil-phalloin specifically bound to F-actin of pure actin filaments as well as of tropomyosin-containing actin filaments changes as a result of binding to S-1. The nature of these changes depends on the presence of caldesmon in the filaments. Caldesmon was supposed to modify the conformational changes in F-actin induced by S-1. 相似文献
7.
Skeletal muscle myosin displays two independent and equivalent binding sites for 1,N6 ethenoadenosine diphosphate, with a dissociation constant of 24.7 microM. MgADP, 10 to 40 microM, behaves as a pure competitive type inhibitor (K(SI)=8-9 microM) for the binding of 1,N6 ethenoadenosine diphosphate to skeletal muscle myosin. On the contrary, the inhibition by MgADP, 0.11-1.54 mM, is neither competitive nor non-competitive nor mixed, as is revealed by the analysis with the general kinetic equation (K.J. Laidler, P.S. Bunting, The Chemical Kinetics of Enzyme Action, 2nd ed., Clarendon, Oxford, 1973, p. 94). To explain our finding we propose that MgADP operates a complex type of inhibition, acting both directly as a competitor for myosin active sites, and indirectly by perturbing the regions of the solvent near to the protein. 相似文献
8.
D I Levitsky V L Shnyrov N V Khvorov A E Bukatina N S Vedenkina E A Permyakov O P Nikolaeva B F Poglazov 《European journal of biochemistry》1992,209(3):829-835
The thermal unfolding and domain structure of myosin subfragment 1 (S1) from rabbit skeletal muscles and their changes induced by nucleotide binding were studied by differential scanning calorimetry. The binding of ADP to S1 practically does not influence the position of the thermal transition (maximum at 47.2 degrees C), while the binding of the non-hydrolysable analogue of ATP, adenosine 5'-[beta, gamma-imido]triphosphate (AdoPP[NH]P) to S1, or trapping of ADP in S1 by orthovanadate (Vi), shift the maximum of the heat adsorption curve for S1 up to 53.2 and 56.1 degrees C, respectively. Such an increase of S1 thermostability in the complexes S1-AdoPP[NH]P and S1-ADP-Vi is confirmed by results of turbidity and tryptophan fluorescence measurements. The total heat adsorption curves for S1 and its complexes with nucleotides were decomposed into elementary peaks corresponding to the melting of structural domains in the S1 molecule. Quantitative analysis of the data shows that the domain structure of S1 in the complexes S1-AdoPP[NH]P and S1-ADP-Vi is similar and differs radically from that of nucleotide-free S1 and S1 in the S1-ADP complex. These data are the first direct evidence that the S1 molecule can be in two main conformations which may correspond to different states during the ATP hydrolysis: one of them corresponds to nucleotide-free S1 and to the complex S1-ADP, and the other corresponds to the intermediate complexes S1-ATP and S1-ADP-Pi. Surprisingly it turned out that the domain structure of S1 with ADP trapped by p-phenylene-N, N'-dimaleimide (pPDM) thiol cross-linking almost does not differ from that of the nucleotide-free S1. This means that pPDM-cross-linked S1 in contrast to S1-AdoPP[NH]P and S1-ADP-Vi can not be considered a structural analogue of the intermediate complexes S1-ATP and S1-ADP-Pi. 相似文献
9.
Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. 总被引:1,自引:0,他引:1
The crystal structure of a proteolytic subfragment from scallop striated muscle myosin, complexed with MgADP, has been solved at 2.5 A resolution and reveals an unusual conformation of the myosin head. The converter and the lever arm are in very different positions from those in either the pre-power stroke or near-rigor state structures; moreover, in contrast to these structures, the SH1 helix is seen to be unwound. Here we compare the overall organization of the myosin head in these three states and show how the conformation of three flexible "joints" produces rearrangements of the four major subdomains in the myosin head with different bound nucleotides. We believe that this novel structure represents one of the prehydrolysis ("ATP") states of the contractile cycle in which the myosin heads stay detached from actin. 相似文献
10.
Bertrand et al. [Bertrand, R., Derancourt, J. & Kassab, R. (1995) Biochemistry 34, 9500-9507] reported that 6-[fluoresceine-5(and 6)-carboxamido] hexanoic acid succinimidyl ester (FHS) selectively modifies Lys553, which is part of the strong actin-binding site of myosin subfragment 1 (S1). We found that the reaction of FHS with Lys533 is accompanied by a decrease in the fluorescence intensity of the reagent. The rate of the FHS reaction increased with increasing pH implying that the unprotonated form of the epsilon-amino group of Lys553 reacts with FHS. Addition of 0.4 M KCl reduced the rate of reaction significantly, which indicates ionic strength-dependent changes in the structure of S1. Limited trypsinolysis of S1 before the FHS reaction also decreased the rate of the reaction showing that the structural integrity of S1 is needed for the reactivity of Lys553. ATP, ADP, ADP.BeF(x), ADP.AlF(4), ADP.V(i) and pyrophosphate significantly decreased the rate of Lys553 labelling, suggesting nucleotide-induced conformational changes in the environment of Lys553. The fluorescence emission spectrum of the Lys553-bound FH moiety and the quenching of its fluorescence by nitromethane was not influenced by nucleotides, implying that the chemical reactivity but not the accessibility of Lys553 was decreased by the nucleotide-induced conformational change. In the presence of ATP when the M(**)ADP.P(i) state of the ATPase cycle is predominantly populated, the reaction rate decreased more than in the case of the S1.ADP.AlF(4)(-) and S1.ADP.V(i) complexes, which are believed to mimic the M(**)ADP.P(i) state. This indicates that the conformation of the S1-ADP.AlF(4)(-) and S1.ADP.V(i) complexes in the vicinity of Lys553 does not resemble the structure of the M(**)ADP.P(i) state. The rate of Lys553 labelling decreased strongly in the presence of actin. The nitromethane quenching of the Lys553-bound FHS was not influenced by actin, which indicates that the reduced reaction rate is not due to steric hindrance caused by the bulky protein but by actin induced conformational changes in the vicinity of Lys553. 相似文献
11.
The fluorescence lifetime of 1,N6-ethenoadenosine diphosphate (?-ADP) is 33 ns when bound to F-actin at 4 °C. When heavy meromyosin or myosin subfragment-1 binds to the F-actin filament, the lifetime of ?-ADP drops, reaching 29 ns when every actin monomer is bound to a myosin head. The change in lifetime is a consequence of cooperative conformational changes among the actin monomers. The results of these experiments support the contention that there are differences in the ways in which the two heads of the myosin molecule interact with the actin filament. 相似文献
12.
Effect of ionic strength on the conformation of myosin subfragment 1-nucleotide complexes.
下载免费PDF全文

The effect of ionic strength on the conformation and stability of S1 and S1-nucleotide-phosphate analog complexes in solution was studied. It was found that increasing concentration of KCl enhances the reactivity of Cys(707) (SH1 thiol) and Lys(84) (reactive lysyl residue) and the nucleotide-induced tryptophan fluorescence increment. In contrast, high KCl concentration lowers the structural differences between the intermediate states of ATP hydrolysis in the vicinity of Cys(707), Trp(510) and the active site, possibly by increasing the flexibility of the molecule. High concentrations of neutral salts inhibit both the formation and the dissociation of the M**.ADP.Pi analog S1.ADP.Vi complex. High ionic strength profoundly affects the structure of the stable S1.ADP.BeF(x) complex, by destabilizing the M*.ATP intermediate, which is the predominant form of the complex at low ionic strength, and shifting the equilibrium to favor the M**.ADP.Pi state. The M*.ATP intermediate is destabilized by perturbation of ionic interactions possibly by disruption of salt bridges. Two salt-bridge pairs, Glu(501)-Lys(505) in the Switch II helix and Glu(776)-Lys(84) connecting the catalytic domain to the lever arm, seem most appropriate to consider for participating in the ionic strength-induced transition of the open M*.ATP to the closed M**.ADP.Pi state of S1. 相似文献
13.
The large change in fluorescence emission of 1-N6-etheno-2-aza-ATP (epsilon-aza-ATP) has been used to investigate the kinetic mechanism of etheno-aza nucleotide binding to bovine cardiac myosin subfragment 1 (myosin-S1) and actomyosin subfragment 1 (actomyosin-S1). The time course of nucleotide fluorescence enhancement observed during epsilon-aza-ATP hydrolysis is qualitatively similar to the time course of tryptophan fluorescence enhancement observed during ATP hydrolysis. In single turnover experiments, the nucleotide fluorescence rapidly increases to a maximum level, then decreases with a rate constant of 0.045 s-1 to a final level, which is about 30% of the maximal enhancement; a similar fluorescence enhancement is obtained by adding epsilon-aza-ADP to cardiac myosin-S1 or actomyosin-S1 under the same conditions (100 mM KCl, 10 mM 4-morpholinepropanesulfonic acid, 5 mM MgCl2, 0.1 mM dithiothreitol, pH 7.0, 15 degrees C). The kinetic data are consistent with a mechanism in which there are two sequential (acto)myosin-S1 nucleotide complexes with enhanced nucleotide fluorescence following epsilon-aza-ATP binding. The apparent second order rate constants of epsilon-aza-ATP binding to cardiac myosin subfragment 1 and actomyosin subfragment 1 are 2-12 times slower than those for ATP. Actin increases the rate of epsilon-aza-ADP dissociation from bovine cardiac myosin-S1 from 1.9 to 110 s-1 at 15 degrees C which can be compared to 0.3 and 65 s-1 for ADP dissociation under similar conditions. Although there are quantitative differences between the rate and equilibrium constants of epsilon-aza- and adenosine nucleotides to cardiac actomyosin-S1 and myosin-S1, the basic features of the nucleotide binding steps of the mechanism are unchanged. 相似文献
14.
Intramonomer fluorescence resonance energy transfer between the donor epsilon-ATP bound to the nucleotide site and the acceptor N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) or 4-dimethylaminophenyl-azophenyl-4'-maleimide bound to Cys-10 in G-actin was measured. The donor-acceptor distance was calculated to be about 40 A. The intermonomer energy transfer in F-actin occurring between epsilon-ADP and DABMI was also measured. The radial coordinate of Cys-10 was calculated to be 25 A based on the helical symmetry of F-actin and the recently calculated radial coordinate of the nucleotide binding site in F-actin i.e. 25 A (Miki, M., Hambly, B. and dos Remedios, C.G. (1986) Biochim. Biophys. Acta 871, 137-141). (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) Corresponding distances separating the donor nucleotide in one monomer from acceptors on Cys-10 in the first and second nearest neighbours in F-actin are 39-40 A and 41-43 A. 相似文献
15.
During Mn(II)-ATP hydrolysis by myosin, the predominant intermediate formed at the burst site of the enzyme below 10 degrees is the myosin-ADP complex formed by adding ADP to myosin, while above 10 degrees it is the myosin -ADP-P1 complex generated by ATP hydroolysis (Yazawa, Morita, & Yagi (1973) J. Biochem. 74, 1107; Hozumi & Tawada (1975) Biochim. Biophys. Acta 376, 1; Tawada & Yoshida (1975) J. Biochem. 78, 293). It is suggested that the second (non-burst) site of myosin predominantly forms the myosin-ATP complex (Hozumi & Tawada, ibid.). From these findings, it is expected that (i) myosin subfragment 1 (S1) having the burst site is bound to actin in Mn(II)-ATP solution containing ADP below 10 degrees, because it forms the S1-ADP complex even in the presence of ATP; (ii) the other S1, i.e., that having the non-burst site, is dissociated from actin, because it forms the S1-ATP complex. These two expectations were confirmed by viscosity measurements of acto-S1 solutions, giving a basis for the separation of S1 into two fractions: one having the burst site and the other having the non-burst site. S1 having the non-burst site could be extracted from partially papain [EC 3.4.22.2]-digested myofibrils of rabbit skeletal muscle with a solution containing MnCl2, ATP, and ADP at 0 degrees. S1 having the burst site was extracted from myofibrils already used for the extraction of S1 having the non-burst site, with a solution containing MgCl2 and ATP at 20 degrees. The former S1 fraction had Mg-ATPase [EC 3.6.1.3] activity, but scarcely showed any initial burst of Pi liberation. The latter S1 showed a Pi burst of more than 0.5 (M/M). The steady state ATPase activity of the former S1 was slightly higher than that of the latter. The burst size of normal S1, i.e., that extracted from papain-digested myofibrils with Mg-PPi or Mg-ATP, was 0.5 (M/M). The ultraviolet absorption spectrum of the non-burst type S1 was not changed by ADP but was changed by ATP, though the difference spectrum was distinct from that of normal S1 and the difference molar extinction coefficient at 289 nm was only 20% of that of normal S1. No significant difference was seen in the compositions of these two S1's and normal S1, as determined by SDS gel electrophoresis. 相似文献
16.
The MgADP-induced decrease of the SH1-SH2 fluorescence resonance energy transfer distance of myosin subfragment 1 occurs in two kinetic steps 总被引:1,自引:0,他引:1
The fluorescence resonance energy transfer distance between 5-[2-[iodoacetyl)amino)ethyl]aminoaphthalene-1-sulfonic acid covalently attached to the SH1 thiol of myosin subfragment 1 as the energy donor and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide attached to SH2 as the energy acceptor has been found to decrease by about 7 A in the presence of MgADP (Dalby, R. E., Weiel, J., and Yount, R. G. (1983) Biochemistry 22, 4696-4706; Cheung, H. C., Gonsoulin, F., and Garland, F. (1985) Biochim. Biophys. Acta 832, 52-62). Fluorescence stopped-flow experiments on the same system have yielded biphasic traces which are resolvable into a fast and slow component, k1 and k2, respectively. Results of experiments in which k1 and k2 were measured as a function of excess ADP concentration showed: 1) a nonlinear dependence of the apparent rate constants on [ADP]; 2) k1 is a factor of 10 faster than k2. These results are consistent with the 3-step mechanism previously proposed for nucleotide binding to myosin S1 (Garland, F., and Cheung, H. C. (1979) Biochemistry 18, 5281-5289). Kinetic experiments in which the anisotropy of the donor was monitored show this quantity to be unchanged over the course of the reaction. The biphasic decrease of donor intensity is assigned to an increase in energy transfer efficiency which, from the above results, is due to a decrease in donor-acceptor distance, occurring in two steps. The fast step is associated with a 4-5-A decrease of the donor-acceptor separation, while the slow step is associated with a further decrease of approximately 2 A. 相似文献
17.
Escherichia coli UDP-galactose 4-epimerase in its native form (epimerase.NAD) binds 8-anilino-1-naphthalenesulfonate (ANS) at one tight binding site per dimer with a dissociation constant of 25.9 +/- 2.1 micrometer at pH 8.5 and 27 degrees C. This appears to be the substrate binding site, as indicated by the fact that ANS is a kinetically competitive reversible inhibitor with a Ki of 27.5 micrometer and by the fact that ANS competes with UMP for binding to the enzyme. Upon binding at this site the fluorescence quantum yield of ANS is enhanced 185-fold, and its emission spectrum is blue shifted from a lambdamax of 515 to 470.nm, which suggests that the binding site is shielded from water and probably hydrophobic. Competitive binding experiments with nucleosides and nucleotides indicate that nucleotide binding at this site involves coupled hydrophobic and electrostatic interactions. The reduced form of the enzyme (epimerase.NADH) has no detectable binding affinity for ANS. The marked difference in the affinities of the native and reduced enzymes for ANS is interpreted to be a manifestation of a conformational difference between these enzyme forms. 相似文献
18.
Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. 总被引:19,自引:6,他引:19
下载免费PDF全文

Equilibrium titrations and kinetic experiments were used to define the cooperative binding of myosin subfragment 1 (S1) to actin-troponin-tropomyosin. Both types of experiment require an equilibrium between two states of the thin filament in which one state (the off state) binds S1 less readily than the other. Equilibrium titrations are compatible with > 95% of the actin7.Tn.Tm units being in the off state in the absence of calcium and 80% in the off state in the presence of calcium. Kinetic binding data suggest that the presence of calcium switches the thin filament from 70% in the off state to < 5%. The two experiments, therefore, define quite different populations of the off states. We propose a three-state model of the thin filament. A "blocked state" which is unable to bind S1, a "closed state" which can only bind S1 relatively weakly and an "open state" in which the S1 can both bind and undergo an isomerization to a more strongly bound rigor-like conformation. The equilibrium between the three states is calcium-dependent; KB = [closed]/[blocked] = 0.3 and > or = 16 and KT = [open]/[closed] = 0.09 and 0.25 in the absence and presence of calcium, respectively. This model can account for both types of experimental data. 相似文献
19.
Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment 1 from rabbit skeletal muscle. Evidence for two states of acto-subfragment 1. 总被引:4,自引:0,他引:4
下载免费PDF全文

We have used actin labelled at Cys-374 with N-(1-pyrenyl)iodoacetamide [Kouyama & Mihashi (1981) Eur. J. Biochem. 114, 33-38] to monitor pressure-induced relaxations of acto-myosin subfragment 1. This label greatly increases the sensitivity of measurement of dissociated actin and reveals the presence of two relaxations. The experimental data can be fitted by a model in which actin binds subfragment 1 relatively weakly (K = 5.9 X 10(4) M-1) and then isomerizes to a more tightly bound complex (K = 1.7 X 10(7) M-1). This directly observed isomerization supports the model of Geeves, Goody & Gutfreund [(1984) J. Muscle Res. Cell. Motil. 5, 351-361]. The rate of the isomerization is too high to be observed in the pressure-jump apparatus (less than 200 microseconds), but analysis of the amplitudes allows estimation of the equilibrium constant of the isomerization as 280 (20 degrees C, 0.1 M-KCl, pH 7). The equilibrium is sensitive to temperature, pressure, ionic strength and the presence of ethylene glycol. The pressure-sensitivity of the isomerization suggests a significant conformational change of the acto-myosin subfragment 1 complex. 相似文献
20.
The binding of ADP to subfragment-1 was investigated by the gel filtration method. The amount of bound ADP was determined as a function of free ADP concentration. Linear Scatchard plots were obtained. The maximum binding number, 0.55 mole of ADP per 10(5) g of protein, and the dissociation constant, 1.6 x 10(-6) M, were obtained, using subfragment-1 prepared by tryptic digestion, in the presence of 0.083 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 25 degrees. Similar maximum numbers, about 0.5 mole per 10(5) g of protein, were obtained with subfragment-1 prepared by chymotryptic digestion of myosin or papain digestion of myofibrils. The maximum number did not depend on the KCl concentration or the temperature, while the dissociation constant decreased on decreasing either the KCl concentration or the temperature. Adenylyl imidodiphosphate binding to subfragment-1 prepared by chymotryptic digestion was also measured by the gel filtration method. The maximum binding number, 0.41 mole per 10(5) g of subfragment-1, and the dissociation constant, less than 10(-7) M, were obtained in the presence of 0.7 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 8 degrees. The difference absorbance at 288 nm of the difference absorption spectrum induced by ADP of subfragment-1 prepared by tryptic digestion was proportional to the amount of bound ADP. The steady-state ATPase rate of subfragment-1 prepared by tryptic digestion was inhibited competitively by ADP in the presence of MgCl2. The extent of the initial burst of ATPase [EC 3.6.1.3] decreased from 0.46 +/- 0.06 to 0.30 +/- 0.09 mole of Pi per 10(5) g of subfragment-1 on adding ADP to a level of 0.6 mM. Subfragment-1 prepared by tryptic digestion bound F-actin with a mole ratio of 1/0.96 of actin monomer. The binding was depressed by the addition of ADP. On the basis of these results, subfragment-1 preparations were assumed to be a half-and-half mixture of two kinds of protein, and properties of each protein are discussed. 相似文献