首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adoptive transfer of adjuvant-induced arthritis was used in this study to examine local macrophages and dendritic cells (DCs) during T cell-mediated synovial inflammation. We studied the influx of CD11b+CD11c+ putative myeloid DCs and other non-lymphoid CD45+ cells into synovium-rich tissues (SRTs) of the affected hind paws in response to a pulse of autoreactive thoracic duct cells. Cells were prepared from the SRTs using a collagenase perfusion-digestion technique, thus allowing enumeration and phenotypic analysis by flow cytometry. Numbers of CD45+ cells increased during the first 6 days, with increases in CD45+MHC (major histocompatibility complex) II+ monocyte-like cells from as early as day 3 after transfer. In contrast, typical MHC II(-) monocytes, mainly of the CD4(-) subset, did not increase until 12 to 14 days after cell transfer, coinciding with the main influx of polymorphonuclear cells. By day 14, CD45+MHC IIhi cells constituted approximately half of all CD45+ cells in SRT. Most of the MHC IIhi cells expressed CD11c and CD11b and represented putative myeloid DCs, whereas only approximately 20% were CD163+ macrophages. Less than 5% of the MHC IIhi cells in inflamed SRT were CD11b(-), setting a maximum for any influx of plasmacytoid DCs. Of the putative myeloid DCs, a third expressed CD4 and both the CD4+ and the CD4(-) subsets expressed the co-stimulatory molecule CD172a. Early accumulation of MHC IIhiCD11c+ monocyte-like cells during the early phase of T cell-mediated inflammation, relative to typical MHC II(-) blood monocytes, suggests that recruited monocytes differentiate rapidly toward the DC lineage at this stage in the disease process. However, it is possible also that the MHC IIhiCD11c+ cells originate from a specific subset of DC-like circulating mononuclear cells.  相似文献   

2.
Uterine dendritic cells (DCs) are critical for activating the T cell response mediating maternal immune tolerance of the semiallogeneic fetus. GM-CSF (CSF2), a known regulator of DCs, is synthesized by uterine epithelial cells during induction of tolerance in early pregnancy. To investigate the role of GM-CSF in regulating uterine DCs and macrophages, Csf2-null mutant and wild-type mice were evaluated at estrus, and in the periconceptual and peri-implantation periods. Immunohistochemistry showed no effect of GM-CSF deficiency on numbers of uterine CD11c(+) cells and F4/80(+) macrophages at estrus or on days 0.5 and 3.5 postcoitum, but MHC class II(+) and class A scavenger receptor(+) cells were fewer. Flow cytometry revealed reduced CD80 and CD86 expression by uterine CD11c(+) cells and reduced MHC class II in both CD11c(+) and F4/80(+) cells from GM-CSF-deficient mice. CD80 and CD86 were induced in Csf2(-/-) uterine CD11c(+) cells by culture with GM-CSF. Substantially reduced ability to activate both CD4(+) and CD8(+) T cells in vivo was evident after delivery of OVA Ag by mating with Act-mOVA males or transcervical administration of OVA peptides. This study shows that GM-CSF regulates the efficiency with which uterine DCs and macrophages activate T cells, and it is essential for optimal MHC class II- and class I-mediated indirect presentation of reproductive Ags. Insufficient GM-CSF may impair generation of T cell-mediated immune tolerance at the outset of pregnancy and may contribute to the altered DC profile and dysregulated T cell tolerance evident in infertility, miscarriage, and preeclampsia.  相似文献   

3.
Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c- plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c- IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c- precursors (>7-fold). Freshly sorted CD11c+ but not CD11c- cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c- cells can be induced to secrete high levels of IFN-alpha, in response to influenza virus. CD11c+ and CD11c- cells can mature in vitro with GM-CSF + TNF-alpha or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c- subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.  相似文献   

4.
We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules, CD1a, CD11c, CD80, CD86, DC-SIGN, and CD40; and were capable of Ag processing, triggering naive T cells in MLR, and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14, and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition, because ES cells can be expanded without limit, they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.  相似文献   

5.
Dendritic cells (DCs) play a key role in activating and orientating immune responses. Little is currently known about DC recruitment during Cryptosporidium parvum infection. In the intestine, epithelial cells act as sensors, providing the first signals in response to infection by enteric pathogens. We analyzed the contribution of these cells to the recruitment of DCs during cryptosporidiosis. We found that intestinal epithelial cells produced a broad range of DC-attracting chemokines in vitro in response to C. parvum infection. The supernatant of the infected cells induced the migration of both bone marrow-derived DCs (BMDC) and the SRDC lymphoid dendritic cell line. Chemokine neutralization abolished DC migration in these assays. We next analyzed chemokine mRNA expression in the mucosa of C. parvum-infected neonatal mice and recruitment of the various subsets of DCs. Myeloid (CD11c+ CD11b+) and double-negative DCs (CD11c+ CD11b- CD8alpha-) were the main subsets recruited in the ileum during C. parvum infection, via a mechanism involving IFNgamma. DCs were also recruited and activated in the draining lymph nodes during C. parvum infection, as shown by the upregulation of expression of MHC II and of the costimulation molecules CD40 and CD86.  相似文献   

6.
Increases in numbers of lung dendritic cells (DC) observed during respiratory viral infections are assumed to be due to recruitment from bone marrow precursors. No local production has been demonstrated. In this study, we isolated defined populations of murine lung cells based on CD11c and MHC class II (MHC II) expression. After culture for 12 days with GM-CSF, we analyzed cell numbers, DC surface markers, and Ag-presenting capacity. Only CD11c+ MHC II- cells from naive mice proliferated, yielding myeloid DC, which induced Ag-specific proliferation of naive T cells. After respiratory syncytial virus (RSV) infection, numbers of pulmonary CD11c+ MHC II- precursor cells were significantly reduced and DC could not be generated. Moreover, RSV infection prevented subsequent in vivo expansion of pulmonary DC in response to influenza infection or LPS treatment. These results provide direct evidence of local generation of fully functional myeloid DC in the lung from CD11c+ MHC II(-) precursor cells that are depleted by RSV infection, leading to an inability to expand lung DC numbers in response to subsequent viral infection or exposure to bacterial products. This depletion of local DC precursors in respiratory viral infections may be important in explaining complex interactions between multiple and intercurrent pulmonary infections.  相似文献   

7.
An emerging concept is that different types of dendritic cells (DCs) initiate different immune outcomes, such as tolerance vs inflammation. In this study, we have characterized the DCs from the lung draining lymph nodes of mice immunized for allergic airway inflammation or tolerance and examined their interactions with CD4(+) T cells. The DC population derived from tolerized mice was predominantly CD11c(+), B220(+), Gr-1(+), CD11b(-), and MHC class II(low), which resembled plasmacytoid-type DCs whereas DCs from the inflammatory condition were largely CD11c(+), B220(-), Gr-1(-), CD11b(+), and MHC class II(high) resembling myeloid-type DCs. The DCs from the tolerogenic condition were poor inducers of T cell proliferation. DCs from both conditions induced T cell IL-4 production but the T cells cultured with tolerogenic DCs were unresponsive to IL-4 as indicated by inhibition of STAT6 activation and expression of growth factor-independent 1, which has been recently shown to be important for STAT6-activated Th2 cell expansion. Our data suggest that airway tolerance vs inflammation is determined by the DC phenotype in lung draining lymph nodes.  相似文献   

8.
Dendritic cells (DCs) are the key antigen-presenting cells controlling the initiation of the T cell- dependent immune response. Currently, two peripheral blood DC subsets have been identified on the basis of their CD11c expression. The CD11c-negative (CD11c-) DCs (expressing high levels of CD123) are designated as lymphoid-derived DCs (DC2), whereas the CD11c+/CD123- cells, do identify the myeloid-derived DCs (DC1). A growing number of studies have been conducted in recent years on both the quantitative and functional alterations of DCs and their subsets in different pathological conditions. In the present study we assessed, using two different flow cytometric (FCM) techniques, the normal profile of blood DCs in 50 italian adult healthy subjects (M/F: 25/25, median age 42.5 years, range 20-65). The percentage and the absolute number of DCs and their subsets, were obtained starting from whole blood samples in two ways: 1) by calculating the number of DCs when gated as lineage-negative/ HLA-DR+ and identifing the two subsets as CD11c+ (DC1) and CD123+ (DC2) and 2) by using three specific markers: BDCA.1 (CD11c+ high/CD123+ low, myeloid DCs); BDCA.2 (CD11c-/ CD123+high, lymphoid DCs); BDCA.3 (CD11c+low /CD123-, myeloid DCs). Six parameters, 4-color FCM analysis were perfomed with a BD FACSCanto equipment. The mean values of the percentage and of the absolute number were: 0.5+/-0.2% and 30+/-11 cells/microL for DCs; 0.2+/-0.1% and 15+/-6 cells/microL for DC1; 0.2+/-0.1% and 15+/-7 cells/microL for DC2. The same values were: 0.2+/-0.1% and 16+/-7 cells/microL for BDCA.1; 0.2+/-0.1% and 12+/-7 cells/microL for BDCA.2; 0.02+/-0.01% and 2+/-1 cells/microL for BDCA.3, respectively. Our study confirmes that the two types of FCM analysis are able to identify the DC population. We also provides the first reference values on normal rates and counts of blood DCs in italian adult healthy subjects.  相似文献   

9.
The immune effects of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) are mainly mediated through dendritic cells (DCs). In vitro, 1,25(OH)(2)D(3) treatment renders murine bone marrow (BM)-derived DCs more tolerogenic, indirectly altering behavior and fate of T lymphocytes. In vivo, treatment with 1,25(OH)(2)D(3) or its analogs prevents diabetes in NOD mice. The aim of this study was to investigate the effects of the 1,25(OH)(2)D(3)-analog TX527 on the expression of antigen-presenting and costimulatory/migratory molecules on BM-derived DCs from NOD mice. After culture with 20 ng/ml GM-CSF + 20 ng/ml IL-4 (8 days) followed by 1000 ng/ml LPS + 100 U/ml IFN-gamma (2 days), with or without 10(-8)M TX527, cells were counted and analyzed by FACS for MHC II, CD86, CD40 and CD54 expression within the CD11c(+) DC population. Upon TX527 treatment, cell recovery was significantly reduced whereas the CD11c(+) DC fraction remained constant. On CD11c(+) DCs, MHC II, CD86 and CD54 were significantly down-regulated and CD40 was twofold upregulated. Globally, BM-derived DCs from NOD mice become more tolerogenic upon TX527 treatment, confirming the effects of 1,25(OH)(2)D(3) on murine DCs and possibly explaining the protective effects of 1,25(OH)(2)D(3) and its analogs from diabetes in NOD mice.  相似文献   

10.
Several leukocyte populations have been described within the pregnant mouse uterus, some of which express the integrin beta 7 (ITGB7). Here we demonstrate that the majority of the ITGB7(+) decidual leukocytes belong to the dendritic cell (DC) lineage. By multiparameter flow cytometric analysis we demonstrated the existence of three distinct DC subsets, characterized by differential expression of ITGA4/ITGB7 (formerly alpha4beta7-integrin) and ITGAE/ITGB7 (formerly alphaEbeta7-integrin). Importantly, the predominant DC subsets reside in distinct microdomains of the Day 9 pregnant mouse uterus. ITGAX(+) ITGAM(med) ITGA4/ITGB7(+) ITGAE(-) (formerly CD11c(+) CD11b(med) alpha4beta7(+) alphaE(-)) cells represent the majority of DCs in the vascular zone (VZ), whereas ITGAX(+) ITGAM(-) ITGAE/ITGB7(+) (formerly CD11c(+) CD11b(-) alphaEbeta7(+)) DCs are mainly located in the lower central decidua basalis (cDB) and the underlying myometrium. A population of ITGAX(+) ITGAM(low) DCs lacking ITGB7 are restricted to the cDB. Confocal microscopy studies show direct contact of VZ DCs with uterine natural killer (uNK) cells, suggesting a functional relationship between both cell populations. Collectively, our data identify three phenotypically distinct DC subsets residing in distinct microdomains of the uterus. The differential expression of ITGA4/ITGB7 and ITGAE/ITGB7 suggests distinct functional roles of the different DC subsets during early pregnancy.  相似文献   

11.
Upon exposure to Ag and inflammatory stimuli, dendritic cells (DCs) undergo a series of dynamic cellular events, referred to as DC maturation, that involve facilitated peptide Ag loading onto MHC class II molecules and their subsequent transport to the cell surface. Besides MHC molecules, human DCs prominently express molecules of the CD1 family (CD1a, -b, -c, and -d) and mediate CD1-dependent presentation of lipid and glycolipid Ags to T cells, but the impact of DC maturation upon CD1 trafficking and Ag presentation is unknown. Using monocyte-derived immature DCs and those stimulated with TNF-alpha for maturation, we observed that none of the CD1 isoforms underwent changes in intracellular trafficking that mimicked MHC class II molecules during DC maturation. In contrast to the striking increase in surface expression of MHC class II on mature DCs, the surface expression of CD1 molecules was either increased only slightly (for CD1b and CD1c) or decreased (for CD1a). In addition, unlike MHC class II, DC maturation-associated transport from lysosomes to the plasma membrane was not readily detected for CD1b despite the fact that both molecules were prominently expressed in the same MIIC lysosomal compartments before maturation. Consistent with this, DCs efficiently presented CD1b-restricted lipid Ags to specific T cells similarly in immature and mature DCs. Thus, DC maturation-independent pathways for lipid Ag presentation by CD1 may play a crucial role in host defense, even before DCs are able to induce maximum activation of peptide Ag-specific T cells.  相似文献   

12.
IL-13 regulates the immune response to inhaled antigens   总被引:3,自引:0,他引:3  
The large inhibitory effect of IL-13 blockers on the asthma phenotype prompted us to ask whether IL-13 would play a role in regulating the allergic immune response in addition to its documented effects on structural pulmonary cells. Because IL-13 does not interact with murine T or B cells, but with monocytes, macrophages, and dendritic cells (DCs), we examined the role of IL-13 in the activation of pulmonary macrophages and DCs and in the priming of an immune response to a harmless, inhaled Ag. We found that a majority of cells called "alveolar or interstitial macrophages" express CD11c at high levels (CD11c(high)) and are a mixture of at least two cell types as follows: 1) cells of a mixed phenotype expressing DC and macrophage markers (CD11c, CD205, and F4/80) but little MHC class II (MHC II); and 2) DC-like cells expressing CD11c, CD205, MHC II, and costimulatory molecules. Endogenous IL-13 was necessary to induce and sustain the increase in MHC II and CD40 expression by pulmonary CD11c(high) cells, demonstrated by giving an IL-13 inhibitor as a measure of prevention or reversal to allergen-primed and -challenged mice. Conversely, IL-13 given by inhalation to naive mice increased the expression of MHC II and costimulatory molecules by CD11c(high) cells in an IL-4Ralpha-dependent manner. We found that exogenous IL-13 exaggerated the immune and inflammatory responses to an inhaled, harmless Ag, whereas endogenous IL-13 was necessary for the priming of naive mice with an inhaled, harmless Ag. These data indicate that blockade of IL-13 may have therapeutic potential for controlling the immune response to inhaled Ags.  相似文献   

13.
Two types of dendritic cells (DC) are circulating in human blood and can be identified by their differential expression of the myeloid Ag CD11c. In this study, we show that CD11c- peripheral blood (PB)-DC correspond to plasmacytoid DC of lymphoid tissue not only by their surface Ag expression profile but, more impressively, by their peculiar ultramorphology. We also demonstrate that CD11c- and CD11c+ DC differ in the quality of their response to and in their requirement for certain cytokines. Freshly isolated CD11c- cells depend on IL-3 for survival and use autocrine or exogenous TNF-alpha as maturation signal, leading to the appearance of a highly dendritic phenotype, the up-regulation and redistribution of MHC class II from lysosomal compartments to the plasma membrane, the increased expression of costimulatory molecules, and the switch from a high Ag-processing to a low Ag-processing/potent accessory cell mode. Surprisingly, IL-4 efficiently killed freshly isolated CD11c- PB-DC, but did not impair the viability of CD11c+ PB-DC and, together with GM-CSF, induced maturation of these cells. A direct functional comparison revealed that neo-Ag-modified and subsequently matured CD11c- but to a lesser extent CD11c+ DC were able to prime naive Ag-specific CD4+ T cells. Our findings show that two diverse DC types respond to certain T cell-derived cytokines in a differential manner and, thus, suggest that suppression or activation of functionally diverse DC types may be a novel mechanism for the regulation of the quantity and quality of immune responses.  相似文献   

14.
The developmental biology of dendritic cells (DC) under physiological conditions remains unclear. In this study, we show that mouse CD11c(+) MHC class II(-)lineage(-) cells are immediate precursors of conventional DC and are widely distributed in both bone marrow and lymphoid tissues. These precursors have a high clonal efficiency, and when cocultured on a supportive stromal monolayer or adoptively transferred in vivo, generate a population CD11c(+)MHC class II(+) DC that retain limited proliferation capacity. During steady state conditions, a small proportion of immediate DC precursors (DCp) and DCs are dividing actively in bone marrow and spleen. Cytokines that initiate and support proliferation of immediate DCp were defined. Collectively, our findings provide evidence of a distinct development pathway for conventional DC in both bone marrow and lymphoid tissues and highlight the importance of in situ replication of immediate DCp and DC in maintaining conventional DC populations.  相似文献   

15.
The dendritic cells and related antigen-presenting cells (APCs) that activate lymphocytes for acquired immunity in the female reproductive tract are not well characterized. The aim of the present study was to examine heterogeneity among uterine APCs in mice and, specifically, to determine whether phenotypically and functionally distinct subpopulations of dendritic cells and macrophages can be identified. Using immunohistochemistry, abundant cells expressing APC-restricted molecules major histocompatibility complex (MHC) class II, F4/80, class A scavenger receptor, macrosialin, and sialoadhesin were evident in estrous mice. Cells expressing the costimulatory molecule B7-2 were rarely observed. Flow cytometric analysis revealed three subpopulations of uterine APCs. Undifferentiated macrophages were F4/80-positive (+), MHC class II-negative (-) cells, of which 70-80% expressed CD11b, but few expressed class A scavenger receptor, macrosialin, or sialoadhesin. Mature macrophages were F4/80+/MHC class II+ cells, of which approximately 50% expressed CD11b, class A scavenger receptor, macrosialin, and sialoadhesin. Uterine dendritic cells were F4/ 80-/MHC class II+ cells, with stimulatory immunoaccessory function relative to uterine macrophages and heterogeneous expression of dendritic markers 33D1, DEC205, CD11c, and CD1. Experiments in ovariectomized mice showed that undifferentiated macrophages were steroid hormone dependent but that mature macrophages and dendritic cells persisted after depletion of ovarian steroid hormones, although with altered phenotypes. In summary, our findings identify three discrete populations of APCs inhabiting the murine uterus and suggest that both mature macrophages and dendritic cells differentiate from undifferentiated macrophage precursor cells. Plasticity in the ontogenetic and functional relationships between uterine dendritic cells and macrophages likely is critical in regulating immune responses conducive to reproductive success.  相似文献   

16.
Dendritic cells (DCs) are antigen-presenting cells (APC) involved in the initiation of immune responses. Maturation of DCs is characterized by the high expression of major histocompatibility complex (MHC) class II and co-stimulatory clusters of differentiation (CD) 40, CD80, and CD86 molecules. Matured DCs are required for T cell differentiation and proliferation. However, the response of DCs to Opisthorchis viverrini antigens has not yet been understood. Therefore, this study sought to determine the expression of surface molecules of JAWSII mouse DCs stimulated by crude somatic (CS) and excretory-secretory (ES) antigens of O. viverrini. ES antigen significantly induced only mRNA expression of CD80 and MHC class II in JAWSII mouse DCs, while CS antigen promoted up-regulation of both mRNA and protein levels of CD80 and MHC class II, indicating relative maturation of JAWII mouse DCs. Moreover, the secreted cytokines from the co-cultures of O. viverrini antigens stimulated JAWSII DC with naïve CD4+ T cells was determined. Significantly increased levels of immunosuppressive cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) were found. The up-regulation of these cytokines may indicate the response of regulatory T cells (Treg) to CS antigen-stimulated JAWSII DC. These findings may lead to a better understanding of the role that DCs play in O. viverrini infection.  相似文献   

17.
BACKGROUND: Heterogeneity within human dendritic cells (DCs) has been described but its functional relationships to cells of macrophage lineage and its role in human immunodeficiency virus (HIV) infection in vivo remain unclear. METHODS: Tonsil macrophages and DCs were isolated from low-density cells by negative selection and DCs were sorted into myeloid and plasmacytoid populations using antibodies to CD11c or CD123. Phagocytosis of latex beads and uptake of dye-labeled target cells were compared by flow cytometry and CD68 and S-100 by immunofluorescence on cytospins of sorted cells. RESULTS: Bead uptake and membrane dye transfer were found in both blood and tonsil CD11c(+) DCs and in CD14(+) cells particularly from blood monocytes. CD11c(-) DCs were poorly phagocytic but took up fluorescent dye from intact, necrotic or apoptotic cells. Tonsil DCs and macrophages expressed both CD68 and S-100 but CD11c(-) DCs expressed CD68 only. CONCLUSIONS: Freshly isolated CD11c(+) tonsil DCs are similar to CD14(+) macrophages in phagocytic function but the poorly phagocytic CD11c(-) DCs can also take up membrane from target cells. The intracellular markers commonly used to identify DCs and macrophages in situ do not identify accurately the CD11c(-) DC subset nor do they distinguish tonsil macrophages from DCs.  相似文献   

18.
Consistent with their seminal role in detecting infection, both mouse bone marrow-derived and splenic CD11c+ dendritic cells (DCs) exhibited higher levels of uptake of Plasmodium chabaudi-parasitized RBCs (pRBCs) than of noninfected RBCs (nRBCs) as determined by our newly developed flow cytometric technique using the dye CFSE to label RBCs before coculture with DCs. To confirm that expression of CFSE by CD11c+ cells following coculture with CFSE-labeled pRBCs represents internalization of pRBC by DCs, we showed colocalization of CFSE-labeled pRBCs and PE-labeled CD11c+ DCs by confocal fluorescence microscopy. Treatment of DCs with cytochalasin D significantly inhibited the uptake of pRBCs, demonstrating that uptake is an actin-dependent phagocytic process. The uptake of pRBCs by splenic CD11c+ DCs was significantly enhanced after infection in vivo and was associated with the induction of DC maturation, IL-12 production, and stimulation of CD4+ T cell proliferation and IFN-gamma production. These results suggest that DCs selectively phagocytose pRBCs and present pRBC-derived Ags to CD4+ T cells, thereby promoting development of protective Th1-dependent immune responses to blood-stage malaria infection.  相似文献   

19.
The developmental pathways and differentiation relationship of dendritic cell (DC) subsets remain unclear. We report that murine CD11c(+)MHC II(-) bone marrow cells, which are immediate DC precursors of CD8 alpha(+), CD8 alpha(-), and B220(+) DC in vivo, can be separated into B220(+) and B220(-) DC precursor subpopulations. Purified B220(-) DC precursors expand, and generate exclusively mature CD11c(+)CD11b(+)B220(-) DC in vitro and after adoptive transfer. B220(+) DC precursors, which resemble plasmacytoid pre-DC, have a lower proliferative potential than B220(-) DC precursors and generate both CD11b(-) B220(+) and CD11b(+)B220(-) DC populations. Both DC precursor populations can give rise to CD8 alpha(+) and CD8 alpha(-) DC subtypes. Our findings indicate that CD11c(+)MHC II(-)B220(+) and CD11c(+)MHC II(-)B220(-) bone marrow cells are distinct DC lineage-restricted precursors.  相似文献   

20.
Differential regulation of human blood dendritic cell subsets by IFNs   总被引:29,自引:0,他引:29  
Based on the relative expression of CD11c and CD1a, we previously identified subsets of dendritic cells (DCs) or DC precursors in human peripheral blood. A CD1a(+)/CD11c(+) population (CD11c(+) DCs), also called myeloid DCs, is an immediate precursor of Langerhans cells, whereas a CD1a(-)/CD11c(-) population (CD11c(-) DCs), sometimes called lymphoid DCs but better known as plasmacytoid DCs, is composed of type I IFN (IFN-alpha beta)-producing cells. Here, we investigate the effects of IFN-alpha beta and IFN-gamma as well as other cytokines on CD11c(+) and CD11c(-) DC subsets, directly isolated from the peripheral blood, instead of in vitro-generated DCs. IFN-gamma and IFN-alpha, rather than GM-CSF, were the most potent cytokines for enhancing the maturation of CD11c(+) DCs. Incubation of CD11c(+) DCs with IFN-gamma also resulted in increased IL-12 production, and this IL-12 allowed DCs to increase Th1 responses by alloreactive T cells. In contrast, IFN-alpha did not induce IL-12 but, rather, augmented IL-10 production. IFN-alpha-primed matured CD11c(+) DCs induced IL-10-producing regulatory T cells; however, this process was independent of the DC-derived IL-10. On the other hand, IFN-alpha by itself neither matured CD11c(-) DCs nor altered the polarization of responding T cells, although this cytokine was a potent survival factor for CD11c(-) DCs. Unlike IFN-alpha, IL-3 was a potent survival factor and induced the maturation of CD11c(-) DCs. The IL-3-primed CD11c(-) DCs activated T cells to produce IL-10, IFN-gamma, and IL-4. Thus, CD11c(+) and CD11c(-) DC subsets play distinct roles in the cytokine network, especially their responses to IFNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号