首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of radioactively labeled butyl gallate to sucrose gradient-purified mung bean (Vigna radiata L.) mitochondria was studied. Titrations showed the binding of [14C]butyl gallate to the mitochondria consisted of both reversible and irreversible components. The reversible component bound with a dissociation constant of approximately 1 micromolar which was comparable to the observed inhibition constant for the inhibition of the alternative pathway by butyl gallate. The reversible binding of labeled butyl gallate was also prevented by addition of excess, unlabeled salicylhydroxamic acid. The concentration of binding sites associated with reversible butyl gallate binding was around 0.5 nanomole per milligram of mitochondrial protein. These results were consistent with the reversible binding site being associated with the butyl gallate site of inhibition of the cyanide-resistant, alternative electron transfer pathway in mung bean mitochondria. In addition to the reversible butyl gallate binding site, a nonspecific, irreversible association of butyl gallate with the mitochondrial membrane was observed. The latter binding did not readily saturate at high butyl gallate concentrations and was not correlated with butyl gallate inhibition of the alternative pathway.  相似文献   

2.
The degree of involvement of cyanide-resistant alternative oxidase in the respiration of Yarrowia lipolytica mitochondria was evaluated by comparing the rate of oxygen consumption in the presence of cyanide, which shows the activity of the cyanide-resistant alternative oxidase, and the oxidation rate of cytochrome c by ferricyanide, which shows the activity of the main cytochrome pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was associated with oxygen consumption due to the functioning of the alternative oxidase. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation) completely inhibited oxygen consumption by the mitochondria. Under these conditions, the inhibition of the alternative oxidase by benzohydroxamic acid (BHA) failed to affect the reduction of ferricyanide at the level of cytochrome c. BHA did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These data indicate that the alternative system is unable to compete with the cytochrome respiratory chain for electrons. The alternative oxidase only transfers the electrons that are superfluous for the cytochrome respiratory chain.  相似文献   

3.
Mitochondria of amoeba Acanthamoeba castellanii in addition to the conventional cytochrome pathway possess, like plant mitochondria, a cyanide-resistant alternative quinol oxidase. In mitochondria isolated from amoeba batch culture grown temporarily at low temperature (6 degrees C), higher respiration was accompanied by lower coupling parameters as compared to control culture (grown at 28 degrees C). In the presence of benzohydroxamate, respiratory rates and coupling parameters were similar in both types of mitochondria indicating that growth in cold conditions did not disturb the cytochrome pathway. Increased contribution of alternative oxidase in total mitochondrial respiration in low-temperature-grown amoeba cells was confirmed by calculation of its contribution using ADP/O measurements. Furthermore, in mitochondria from low-temperature- grown cells the content of the alternative oxidase was increased and correlated with the increase in the unstimulated and GMP-stimulated cyanide-resistant respiratory activity. A possible physiological role of higher activity of alternative oxidase as response to growth at a low temperature in unicellular organisms, such as amoeba, is discussed.  相似文献   

4.
The activity of the cyanide-resistant alternative oxidase (pathway) of Y. lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

5.
The activity of the cyanide-resistant alternative oxidase (pathway) of Yarrowia lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

6.
Cyanide-insensitive Respiration in Plant Mitochondria   总被引:40,自引:21,他引:19       下载免费PDF全文
Pathways of electron transport have been studied in mitochondria isolated from hypocotyls of etiolated mung bean seedlings and skunk cabbage spadices that show cyanide-resistant respiratory activity. The residual flux through cytochrome c oxidase is shown to be small in comparison with the flux through an unidentified alternative oxidase that is known to have a high affinity for oxygen. This alternative oxidase is not a cytochrome. Skunk cabbage and mung bean mitochondria contain cytochromes a and a3 that have absorption peaks differing slightly from those of animal preparations. A slow oxidation-reduction of cytochrome a3-CN has been demonstrated. Cytochromes b undergo oxidation and reduction in the presence of cyanide but play no essential role in the cyanide-resistant pathway. Antimycin inhibits to an extent similar to that of cyanide; the respiratory chain bifurcates on the substrate side of the antimycin-sensitive site. Evidence is presented for the selective inhibition by thiocyanate, α, α′-dipyridyl, and 8-hydroxyquinoline of the alternative oxidase pathway, which may therefore contain a non-heme iron protein.  相似文献   

7.
Mitochondria of Acanthamoeba castellanii possess a cyanide-resistant GMP-stimulated ubiquinol alternative oxidase in addition to the cytochrome pathway. In a previous work it has been observed that an interaction between the two ubiquinol-oxidizing pathways exists in intact A. castellanii mitochondria and that this interaction may be due to a high sensitivity of the alternative oxidase to matrix pH. In this study we have shown that the alternative oxidase activity reveals a pH-dependence with a pH optimum at 6.8 whatever the reducing substrate may be. The GMP stimulation of alternative oxidase is also strongly dependent on pH implicating probably protonation/deprotonation processes at the level of ligand and protein with an optimum pH at 6.8. The ubiquinone redox state-dependence of alternative oxidase activity is modified by pH in such a way that the highest activity for a given ubiquinone redox state is observed at pH 6.8. Thus pH, binding of GMP, and redox state of ubiquinone collaborate to set the activity of the GMP-stimulated alternative oxidase in isolated A. castellanii mitochondria. The high pH sensitivity of the alternative oxidase could link inactivation of the cytochrome pathway proton pumps to activation of the alternative oxidase with acceleration of redox free energy dissipation as a consequence.  相似文献   

8.
The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of intact mitochondria. The incubation of mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and the detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated with AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order: AMP = GMP > GDP > GTP > MP > IMP. The apparent K(m) values for AMP in reactivation of the alternative oxidase of submitochondrial particles or mitochondria treated with Triton X-100 and incubated at 25 degrees C were calculated. Physiological aspects of activation of the alternative oxidase are discussed in connection with the impairment of electron transfer through the cytochrome pathway.  相似文献   

9.
ABSTRACT A study of the effect of respiratory inhibitors on O2 uptake of Euglena gracilis mitochondria, isolated from cells grown in the presence of cyanide or with ethanol as carbon source, was undertaken. The contents of cytochrome c oxidase and alternative oxidase were also determined. Inhibition of respiration by antimycin and cyanide was only partial and it was dependent on the oxidizable substrate used. Succinate oxidation was the most sensitive to cyanide whereas lactate oxidation was the most resistant. Cell growth in the presence of cyanide or with ethanol as carbon source brought about an enhanced content of alternative oxidase without a concomitant increase in cytochrome aa3 content. However, a correlation between cyanide-resistant respiration and alternative oxidase content was not found. Analysis of heme types in mitochondrial membranes revealed the absence of heme O. The data suggest the presence of an inducible alternative oxidase in Euglena mitochondria which has high resistance to cyanide and contains heme B. A close relationship between Euglena alternative oxidase and bacterial quinol oxidases containing B-type heme is proposed.  相似文献   

10.
A partial purification of the cyanide-resistant, alternative oxidase from skunk cabbage (Symplocarpus foetidus L.) spadix mitochondria is described. Skunk cabbage mitochondria were solubilized in N,N-bis-(3-D-glucon-amido-propyl)deoxycholamide and the alternative oxidase was purified using a batch DEAE-cellulose treatment, followed by precipitation with Extracti-Gel and chromatography on Sephadex G-200. Following pooling and concentrating of the most active fractions from the gel filtration column, a 20- to 30-fold purification of the alternative oxidase was obtained, with no evidence of contamination by cytochrome c oxidase (complex IV) or cytochrome c reductase (complex III). Polyacrylamide gel electrophoresis of the partially purified oxidase showed major polypeptides at 36 and 29 kD, both of which react with monoclonal antibodies raised against the Sauromatum guttatum alternative oxidase. The purified oxidase fraction showed no absorbance in the visible spectral region, and addition of sodium borohydride induced no absorbance changes in the ultraviolet region. The purified alternative oxidase catalyzed the four-electron reduction of oxygen to water in the absence of citrate, but catalyzed an apparent two-electron reduction of oxygen to hydrogen peroxide in the presence of 0.7 M citrate.  相似文献   

11.
A comparison was made between the oxygen uptake of roots and leaves and of mitochondria isolated from the same tissues. Ten species were included in this study: three legumes, one C3-monocotyledon, one C4-monocotyledon, the rest non-leguminous C3-dicotyledons. Root and leaf respiration in all species examined displayed substantial resistance to KCN (0.1–1.0 mM) and the cyanide-resistant respiration was completely inhibited by salicylhydroxamic acid (SHAM; 10–20 mM). SHAM alone inhibited oxygen uptake to varying degrees, depending on the species. Mitochondria were isolated from roots and leaves of many of the species examined and also displayed cyanide-resistant oxygen uptake, which was sensitive to both SHAM and tetraethylthiuram disulfide (disulfiram). Concentrations of SHAM greater than 2 mM caused inhibition of the cytochrome path as well as of the alternative path in isolated mitochondria. Respiration rates of intact roots and leaves in the presence of varying concentrations of SHAM alone were plotted against those obtained in the presence of both SHAM and KCN. This plot showed that in vivo the cytochrome pathway was not affected by 10 or 20 mM SHAM in the external solution. We conclude that the activity of the alternative pathway in intact roots and leaves can be reliably estimated by comparing SHAM-sensitivity and cyanide-resistance of respiration.  相似文献   

12.
The effects of salicylic acid (SA) on the rate of respiration and the activity of cyanide-resistant sensitive to salicylhydroxamic acid oxidation pathway in detached etiolated cotyledons of yellow lupine (Lupinus luteus L.) and mitochondria isolated from these cotyledons were studied. Cotyledon treatment with 1 mM SA for 12 h increased the rate of oxygen uptake predominantly due to the activation of cyanide-resistant respiration (CRR) and alternative pathway of mitochondrial oxidation. It was established that the lupine genome encodes at least two isoforms of alternative oxidase (AO), LuAOX1 and LuAOX2, with the mol wt of about 35 kD. These proteins are always present in the mitochondria of etiolated lupine cotyledons, but their level increased rapidly after cotyledon treatment with SA, probably by increasing the mRNA content of the corresponding genes. SA-induced expression of Aox genes was correlated with the activation of CRR and an increase in the maximal activity (capacity) of AO in both detached yellow lupine cotyledons and mitochondria isolated from them.  相似文献   

13.
The ability of cyanide-resistant mitochondria of yeast Candida lipolytica to perform reverse electron transfer from cytochrome c to alternative oxidase was studied. It was shown that the energy for such a transfer can be provided by high energy intermediates or membrane potential but not by ATP. Reverse electron transfer from cytochrome c is impossible due to energy of NADH and alpha-glycerophosphate oxidation via alternative pathway in the presence of cyanide. These results prove once again that electron transfer via alternative pathway is not connected with the energy accumulation.  相似文献   

14.
Mitochondria from four plant species showing normal (Arum maculatum L., Arum italicum Mill., Sauromatum guttatum Schott) or induced (Solanum tuberosum L.) resistance to cyanide were submitted to temperature treatments up to 90 min at 45°C. The activity of the alternative, cyanide-resistant electron transport pathway was specifically and deeply altered by temperature treatments. Hydrogen sulfide was released in direct proportion to the reduction of activity of the alternative pathway. Only a small fraction (? 20%) of the total labile sulfide content of the mitochondria was associated with the operation of this pathway. In cyanide-resistant mitochondria, the cytochrome pathway was much more resistant to thermal inactivation than the alternative pathway. On the contrary, in cyanide-sensitive mitochondria (with no alternative pathway) the cytochrome pathway was highly sensitive to temperature treatments. These results indicate that the presence of a cyanide-resistant alternative pathway is correlated with a higher degree of resistance to thermal denaturation of the cytochrome pathway. They also strongly suggest that iron-sulfur proteins are regular components of the alternative pathway.  相似文献   

15.
Using a monoclonal antibody to the alternative oxidase from voodoo lily, we provide evidence that the green alga Chlamydomonas reinhardtii Dang, possesses a protein that is immunologically related to the higher plant alternative oxidase. Mitochondria were isolated from a cell wall-less mutant strain (CW-15), and the presence of cyanide-resistant oxygen consumption was confirmed in these mitochondria. The voodoo lily antibody was used as a probe for immunoblotting of sodium dodecyl sulphate-polyacrylamide gel electrophoresis gels of mitochondrial proteins of C. reinhardtii. The antibody reacted with a protein from C. reinhardtii with the same molecular mass (36 kDa) as the alternative oxidase from voodoo lily and tobacco mitochondria. These results suggest that cyanide-resistant respiration in C. reinhardtii is mediated by a higher plant-type alternative oxidase.  相似文献   

16.
Neurospora crassa mitochondria use a branched electron transport system in which one branch is a conventional cytochrome system and the other is an alternative cyanide-resistant, hydroxamic acid-sensitive oxidase that is induced when the cytochrome system is impaired. We used a monoclonal antibody to the alternative oxidase of the higher plant Sauromatum guttatum to identify a similar set of related polypeptides (Mr, 36,500 and 37,000) that was associated with the alternative oxidase activity of N. crassa mitochondria. These polypeptides were not present constitutively in the mitochondria of a wild-type N. crassa strain, but were produced in high amounts under conditions that induced alternative oxidase activity. Under the same conditions, mutants in the aod-1 gene, with one exception, produced apparently inactive alternative oxidase polypeptides, whereas mutants in the aod-2 gene failed to produce these polypeptides. The latter findings support the hypothesis that aod-1 is a structural gene for the alternative oxidase and that the aod-2 gene encodes a component that is required for induction of alternative oxidase activity. Finally, our results indicate that the alternative oxidase is highly conserved, even between plant and fungal species.  相似文献   

17.
Effects of cyanide and rotenone were examined on respiration (oxygen uptake) in mitochondria isolated from sugar beet (Beta vulgaris L.) taproots at various stages of plant growth and development. In mitochondria from growing and cool-stored taproots, the ability of cyanide-resistant, salicylhydroxamic acid-sensitive alternative oxidase (AO) to oxidize malate, succinate, and other substrates of tricarboxylic acid cycle (TCA) was low and constituted less than 10% compared to predominant activity of the cytochrome oxidase pathway during State 3 respiration. Artificial aging of storage tissue (2-day incubation of tissue sections under high humidity at 20°C) substantially activated AO, but the highest capacity (V alt) of this pathway of mitochondrial oxidation was only observed in the presence of pyruvate and a reducing agent dithiothreitol. At the same time, mitochondria from growing taproots exhibited high rates of rotenone-resistant respiration, and these rates gradually declined during plant growth and development. The slowest rates of this respiration were observed during oxidation of NAD-dependent TCA substrates in mitochondria from dormant storage organ. The results are discussed in relation to significance of alternative electron transport pathways during growth and storage of sugar beet taproots.  相似文献   

18.
Evidence for a mixed population of covalently and noncovalently associated dimers of the cyanide-resistant alternative oxidase protein in plant mitochondria is presented. High molecular mass (oxidized) species of the alternative oxidase protein, having masses predicted for homodimers, appeared on immunoblots when the sulfhydryl reductant, dithiothreitol (DTT), was omitted from sodium dodecyl sulfate-polyacrylamide gel sample buffer. These oxidized species were observed in mitochondria from soybean (Glycine max [L.] Merr. cv Ransom), Sauromatum guttatum Schott, and mung bean (Vigna radiata [L.] R. Wilcz). Reduced species of the alternative oxidase were also present in the same mitochondrial samples. The reduced and oxidized species in isolated soybean cotyledon mitochondria could be interconverted by incubation with the sulfhydryl reagents DTT and azodicarboxylic acid bis(dimethylamide) (diamide). Treatment with chemical cross-linkers resulted in cross-linking of the reduced species, indicating a noncovalent dimeric association among the reduced alternative oxidase molecules. Alternative pathway activity of soybean mitochondria increased following reduction of the alternative oxidase protein with DTT and decreased following oxidation with diamide, indicating that electron flow through the alternative pathway is sensitive to the sulfhydryl/disulfide redox poise. In mitochondria from S. guttatum floral appendix tissue, the proportion of the reduced species increased as development progressed through thermogenesis.  相似文献   

19.
The contribution of the cyanide-resistant, alternative pathway to plant mitochondrial electron transport has been studied using a modified aqueous phase on-line mass spectrometry-gas chromatography system. This technique permits direct measurement of the partitioning of electrons between the cytochrome and alternative pathways in the absence of added inhibitors. We demonstrate that in mitochondria isolated from soybean (Glycine max L. cv Ransom) cotyledons, the alternative pathway contributes significantly to oxygen uptake under state 4 conditions, when succinate is used as a substrate. However, when NADH is the substrate, addition of pyruvate, an allosteric activator of the alternative pathway, is required to achieve the same level of alternative pathway activity. Under state 3 conditions, when the reduction state of the ubiquinone pool is low, the addition of pyruvate allows the alternative pathway to compete with the cytochrome pathway for electrons from the ubiquinone pool when the cytochrome pathway is not saturated. These results provide direct experimental verification of the kinetics consequences of pyruvate addition on the partitioning of electron flow between the two respiratory pathways. This distribution of electrons between the two unsaturated pathways could not be measured using conventional oxygen electrode methods and illustrates a clear advantage of the mass spectrometry technique. These results have significant ramifications for studies of plant respiration using the oxygen electrode, particularly those studies involving intact tissues.  相似文献   

20.
《FEMS yeast research》2005,5(3):231-236
The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5′-AMP, AMP) did not stimulate the respiration of intact mitochondria. The incubation of mitochondria at room temperature (25 °C) for 3–5 h or their treatment with ultrasound, phospholipase A, and the detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated with AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order: AMP = GMP > GDP > GTP > XMP > IMP. The apparent Km values for AMP in reactivation of the alternative oxidase of submitochondrial particles or mitochondria treated with Triton X-100 and incubated at 25 °C were calculated. Physiological aspects of activation of the alternative oxidase are discussed in connection with the impairment of electron transfer through the cytochrome pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号