首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung and chest wall mechanics were studied during fits of laughter in 11 normal subjects. Laughing was naturally induced by showing clips of the funniest scenes from a movie by Roberto Benigni. Chest wall volume was measured by using a three-dimensional optoelectronic plethysmography and was partitioned into upper thorax, lower thorax, and abdominal compartments. Esophageal (Pes) and gastric (Pga) pressures were measured in seven subjects. All fits of laughter were characterized by a sudden occurrence of repetitive expiratory efforts at an average frequency of 4.6 +/- 1.1 Hz, which led to a final drop in functional residual capacity (FRC) by 1.55 +/- 0.40 liter (P < 0.001). All compartments similarly contributed to the decrease of lung volumes. The average duration of the fits of laughter was 3.7 +/- 2.2 s. Most of the events were associated with sudden increase in Pes well beyond the critical pressure necessary to generate maximum expiratory flow at a given lung volume. Pga increased more than Pes at the end of the expiratory efforts by an average of 27 +/- 7 cmH2O. Transdiaphragmatic pressure (Pdi) at FRC and at 10% and 20% control forced vital capacity below FRC was significantly higher than Pdi at the same absolute lung volumes during a relaxed maneuver at rest (P < 0.001). We conclude that fits of laughter consistently lead to sudden and substantial decrease in lung volume in all respiratory compartments and remarkable dynamic compression of the airways. Further mechanical stress would have applied to all the organs located in the thoracic cavity if the diaphragm had not actively prevented part of the increase in abdominal pressure from being transmitted to the chest wall cavity.  相似文献   

2.
Respiratory muscle dysfunction limits exercise endurance in severe chronic airflow obstruction (CAO). To investigate whether inspiring O2 alters ventilatory muscle recruitment and improves exercise endurance, we recorded pleural (Ppl) and gastric (Pga) pressures while breathing air or 30% O2 during leg cycling in six patients with severe CAO, mild hypoxemia, and minimal arterial O2 desaturation with exercise. At rest, mean (+/- SD) transdiaphragmatic pressure (Pdi) was lower inspiring 30% O2 compared with air (23 +/- 4 vs. 26 +/- 7 cmH2O, P less than 0.05), but the pattern of Ppl and Pga contraction was identical while breathing either gas mixture. Maximal transdiaphragmatic pressure was similar breathing air or 30% O2 (84 +/- 30 vs. 77 +/- 30 cmH2O). During exercise, Pdi increased similarly while breathing air or 30% O2, but the latter was associated with a significant increase in peak inspiratory Pga and decreases in peak inspiratory Ppl and expiratory Pga. In five out of six patients, exercise endurance increased with O2 (671 +/- 365 vs. 362 +/- 227 s, P less than 0.05). We conclude that exercise with O2 alters ventilatory muscle recruitment and increases exercise endurance. During exercise inspiring O2, the diaphragm performs more ventilatory work which may prevent overloading the accessory muscles of respiration.  相似文献   

3.
In healthy subjects, we compared the effects of an expiratory (ERL) and an inspiratory (IRL) resistive load (6 cmH2O.l-1.s) with no added resistive load on the pattern of respiratory muscle recruitment during exercise. Fifteen male subjects performed three exercise tests at 40% of maximum O2 uptake: 1) with no-added-resistive load (control), 2) with ERL, and 3) with IRL. In all subjects, we measured breathing pattern and mouth occlusion pressure (P0.1) from the 3rd min of exercise, in 10 subjects O2 uptake (VO2), CO2 output (VCO2), and respiratory exchange ratio (R), and in 5 subjects we measured gastric (Pga), pleural (Ppl), and transdiaphragmatic (Pdi) pressures. Both ERL and IRL induced a high increase of P0.1 and a decrease of minute ventilation. ERL induced a prolongation of expiratory time with a reduction of inspiratory time (TI), mean expiratory flow, and ratio of inspiratory to total time of the respiratory cycle (TI/TT). IRL induced a prolongation of TI with a decrease of mean inspiratory flow and an increase of tidal volume and TI/TT. With ERL, in two subjects, Pga increased and Ppl decreased more during inspiration than during control suggesting that the diaphragm was the most active muscle. In one subject, the increases of Ppl and Pga were weak; thus Pdi increased very little. In the two other subjects, Ppl decreased more during inspiration but Pga also decreased, leading to a decrease of Pdi. This suggests a recruitment of abdominal muscles during expiration and of accessory and intercostal muscles during inspiration. With IRL, in all subjects, Ppl again decreased more, Pga began to decrease until 40% of TI and then increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To investigate the effects of airway cartilage softening on tracheal mechanics, pressure-volume (PV) curves of excised tracheas were studied in 12 rabbits treated with 100 mg/kg iv papain, whereas 14 control animals received no pretreatment. The animals were killed 24 h after the injection and the excised specimens studied 24 h later. Treated tracheas exhibited decreased ability to withstand negative transmural pressures, reflected in increased collapse compliance: 6.2 +/- 2.1 vs. 2.0 +/- 0.5% peak volume (Vmax)/cmH2O means +/- SD, P less than 0.001, (Vmax = extrapolated maximal tracheal volume), increased kc (exponential constant that reflects the shape of collapse limb of the PV curve): 0.244 +/- 0.077 vs. 0.065 +/- 0.015 (P less than 0.001). The distension limb of the PV curve greater than 2.5 cmH2O transmural pressure (Ptm) was no different. Compliance between 0 and 2.5 cmH2O Ptm was increased in papain-treated rabbits: 4.97 +/- 1.73 vs. 2.30 +/- 0.31% Vmax/cmH2O (P less than 0.001). Tracheal volume, and therefore mean diameter, was decreased at 0 Ptm: 2.7 +/- 0.26 vs. 3.2 +/- 0.27 mm (P less than 0.001). We conclude that airway cartilage softening increases the compliance of the trachea at pressures less than 2.5 cmH2O Ptm.  相似文献   

5.
Diaphragmatic contractility after upper abdominal surgery   总被引:5,自引:0,他引:5  
Postoperative dysfunction of the diaphragm has been reported after upper abdominal surgery. This study was designed to determine whether an impairment in diaphragmatic contractility was involved in the genesis of the diaphragmatic dysfunction observed after upper abdominal surgery. Five patients undergoing upper abdominal surgery were studied. The following measurements were performed before and 4 h after surgery: vital capacity (VC), functional residual capacity (FRC), and forced expiratory volume in 1 s. Diaphragmatic function was also assessed using the ratio of changes in gastric pressure (delta Pga) over changes in transdiaphragmatic pressure (delta Pdi). Finally contractility of the diaphragm was determined by measuring the change in delta Pdi generated during bilateral electrical stimulation of the phrenic nerves (Pdi stim). Diaphragmatic dysfunction occurred in all the patients after upper abdominal surgery as assessed by a marked decrease in delta Pga/delta Pdi from 0.480 +/- 0.040 to -0.097 +/- 0.152 (P less than 0.01) 4 h after surgery compared with preoperative values. VC also markedly decreased after upper abdominal surgery from 3,900 +/- 630 to 2,060 +/- 520 ml (P less than 0.01) 4 h after surgery. In contrast, no change in FRC and Pdi stim was observed 4 h after surgery. In contrast, no change in FRC and Pdi stim was observed 4 h after upper abdominal surgery compared with the preoperative values. We conclude that contractility of the diaphragm is not altered after upper abdominal surgery, and diaphragmatic dysfunction is secondary to other mechanisms such as possible reflexes arising from the periphery (chest wall and/or peritoneum), which could inhibit the phrenic nerve output.  相似文献   

6.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Using open-magnitude scaling, we compared the relationships between breathlessness, inspiratory esophageal pressure swing (delta Pes), and ventilation in pregnancy and postpartum. Thirteen healthy women performed progressive cycle exercise tests at 33 +/- 2 wk gestation and 12 +/- 3 wk postpartum. Pulmonary function and maximal transdiaphragmatic pressure did not change. Minute ventilation (VE) was greater in the third trimester. This increase was entirely due to the increase in tidal volume (VT; 0.74 +/- 0.18 vs. 0.54 +/- 0.18 liters at rest, P less than 0.01; 1.56 +/- 0.3 vs. 1.24 +/- 0.24 liters at 48 W, P less than 0.001). delta Pes (15.3 +/- 3.0 vs. 11.9 +/- 3.5 cmH2O at 48 W, P less than 0.01) and breathlessness (1.8 +/- 1.4 vs. 1.0 +/- 0.9 at 48 W, P less than 0.05) were greater in the third trimester. However, the relationships between VT and delta Pes and between delta Pes and breathlessness were identical in the two conditions. The VT-tidal abdominal volume (Vab) and Vab-tidal gastric pressure swing (delta Pga) relationships were similar in the two conditions. In conclusion, the relationship between delta Pes and breathlessness is the same in the third trimester and postpartum. The increased VE is responsible for the breathlessness in the third trimester. Despite progressive abdominal distension by the gravid uterus, the VT-Vab and Vab-delta Pga relationships were the same in the two conditions.  相似文献   

8.
Central venous pressure in humans during short periods of weightlessness   总被引:1,自引:0,他引:1  
Central venous pressure (CVP) was measured in 14 males during 23.3 +/- 0.6 s (mean +/- SE) of weightlessness (0.00 +/- 0.05 G) achieved in a Gulfstream-3 jet aircraft performing parabolic flight maneuvers and during either 60 or 120 s of +2 Gz (2.0 +/- 0.1 Gz). CVP was obtained using central venous catheters and strain-gauge pressure transducers. Heart rate (HR) was measured simultaneously in seven of the subjects. Measurements were compared with values obtained inflight at 1 G with the subjects in the supine (+1 Gx) and upright sitting (+1 Gz) positions, respectively. CVP was 2.6 +/- 1.5 mmHg during upright sitting and 5.0 +/- 0.7 mmHg in the supine position. During weightlessness, CVP increased significantly to 6.8 +/- 0.8 mmHg (P less than 0.005 compared with both upright sitting and supine inflight). During +2 Gz, CVP was 2.8 +/- 1.4 mmHg and only significantly lower than CVP during weightlessness (P less than 0.05). HR increased from 65 +/- 7 beats/min at supine and 70 +/- 5 beats/min during upright sitting to 79 +/- 7 beats/min (P less than 0.01 compared with supine) during weightlessness and to 80 +/- 6 beats/min (P less than 0.01 compared with upright sitting and P less than 0.001 compared with supine) during +2 Gz. We conclude that the immediate onset of weightlessness induces a significant increase in CVP, not only compared with the upright sitting position but also compared with the supine position at 1 G.  相似文献   

9.
Aminophylline and human diaphragm strength in vivo   总被引:4,自引:0,他引:4  
The transdiaphragmatic pressure (Pdi) twitch response to single shocks from supramaximal bilateral phrenic nerve stimulation was studied before and after acute intravenous infusions of aminophylline [14.9 +/- 3.1 (SD) micrograms/ml] in nine normal subjects. Stimulation was performed with subjects in the sitting position against an occluded airway from end expiration. Baseline gastric pressure and abdominal and rib cage configuration were kept constant. There was no significant difference in peak twitch Pdi from the relaxed diaphragm between control (38.8 +/- 3.3 cmH2O) and aminophylline (40.2 +/- 5.2 cmH2O) experiments. Other twitch characteristics including contraction time, half-relaxation time, and maximum relaxation rate were also unchanged. The Pdi-twitch amplitude at different levels of voluntary Pdi was measured with the twitch occlusion technique, and this relationship was found to be similar under control conditions and after aminophylline. With this technique, maximum Pdi (Pdimax) was calculated as the Pdi at which stimulation would result in no Pdi twitch because all motor units are already maximally activated. No significant change was found in mean calculated Pdimax between control (146.9 +/- 27.0 cmH2O) and aminophylline (149.2 +/- 26.0 cmH2O) experiments. We conclude from this study that the acute administration of aminophylline at therapeutic concentrations does not significantly affect contractility or maximum strength of the normal human diaphragm in vivo.  相似文献   

10.
To quantitate the O2 cost of maximal exercise hyperpnea, we required eight healthy adult subjects to mimic, at rest, the important mechanical components of submaximal and maximal exercise hyperpnea. Expired minute ventilation (VE), transpulmonary and transdiaphragmatic (Pdi) pressures, and end-expiratory lung volume (EELV) were measured during exercise at 70 and 100% of maximal O2 uptake. At rest, subjects were given visual feedback of their exercise transpulmonary pressure-tidal volume loop (WV), breathing frequency, and EELV, which they mimicked repeatedly for 5 min per trial over several trials, while hypocapnia was prevented. The change in total body O2 uptake (VO2) was measured and presumed to represent the O2 cost of the hyperpnea. In 61 mimicking trials with VE of 115-167 l/min and WV of 124-544 J/min, VE, WV, duty cycle of the breath, and expiratory gastric pressure (Pga) integrated with respect to time (integral of Pga.dt/min) were not different from those observed during maximum exercise. integral of Pdi.dt/min was 14% less and EELV was 6% greater during maximum exercise than during mimicking. The O2 cost measurements within a subject were reproducible over 3-12 trials (coefficient of variation +/- 10% range 5-16%). The O2 costs of hyperpnea correlated highly and positively with VE and WV and less, but significantly, with integral of Pdi.dt and integral of Pga.dt. The O2 cost of VE rose out of proportion to the increasing hyperpnea, so that between 70 and 100% of maximal VO2 delta VO2/delta VE increased 40-60% (1.8 +/- 0.2 to 2.9 +/- 0.1 ml O2/l VE) as VE doubled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We studied the changes in functional residual capacity (FRC), thoracoabdominal volume (Vw), and chest wall configuration in five normal subjects seated in an aircraft flying parabolic trajectories resulting in 20-s periods of microgravity. We measured vital capacity (VC), inspiratory capacity, and tidal volume by integrating airflow at the mouth and changes in rib cage and abdominal volume (delta Vrc and delta Vab, respectively, where delta Vrc + delta Vab = delta Vw) using induction plethysmography. During microgravity (0 Gz) FRC decreased by 413 +/- 70 (SE) ml and VC by 0.37 liter. The decrease in Vw did not differ from that in FRC and was entirely the result of reduction of Vab, the Vrc showing no significant change. During tidal breathing the abdominal contribution (delta Vab/delta Vw) increased from 0.39 +/- 0.08 at 1 Gz to 0.57 +/- 0.08 at 0 Gz. During brief periods of hypergravity (approximately 1.8 Gz) all changes were opposite in sign and relatively smaller. Limited data during "roller coaster" flight patterns suggested that, in contrast to configurational changes, the temporal pattern of breathing was uninfluenced by changes in Gz. We conclude that at the onset of weightlessness there are substantial changes in lung volume and thoracoabdominal configuration. Abdominal contribution to tidal excursions increases but the temporal pattern of breathing is unchanged.  相似文献   

12.
The abdominal muscles have been shown to fatigue in response to voluntary isocapnic hyperpnea using direct nerve stimulation techniques. We investigated whether the abdominal muscles fatigue in response to dynamic lower limb exercise using such techniques. Eleven male subjects [peak oxygen uptake (VO2 peak) = 50.0 +/- 1.9 (SE) ml.kg(-1).min(-1)] cycled at >90% VO2 peak to exhaustion (14.2 +/- 4.2 min). Abdominal muscle function was assessed before and up to 30 min after exercise by measuring the changes in gastric pressure (Pga) after the nerve roots supplying the abdominal muscles were magnetically stimulated at 1-25 Hz. Immediately after exercise there was a decrease in Pga at all stimulation frequencies (mean -25 +/- 4%; P < 0.001) that persisted up to 30 min postexercise (-12 +/- 4%; P = 0.001). These reductions were unlikely due to changes in membrane excitability because amplitude, duration, and area of the rectus abdominis M wave were unaffected. Declines in the Pga response to maximal voluntary expiratory efforts occurred after exercise (158 +/- 13 before vs. 145 +/- 10 cmH2O after exercise; P = 0.005). Voluntary activation, assessed using twitch interpolation, did not change (67 +/- 6 before vs. 64 +/- 2% after exercise; P = 0.20), and electromyographic activity of the rectus abdominis and external oblique increased during these volitional maneuvers. These data provide new evidence that the abdominal muscles fatigue after sustained, high-intensity exercise and that the fatigue is primarily due to peripheral mechanisms.  相似文献   

13.
To test the hypothesis that during unsupported arm exercise (UAE) some of the inspiratory muscles of the rib cage partake in upper torso and arm positioning and thereby decrease their contribution to ventilation, we studied 11 subjects to measure pleural (Ppl) and gastric (Pga) pressures, heart rate, respiratory frequency, O2 uptake (VO2), and tidal volume (VT) during symptom-limited UAE. We used leg ergometry (LE) as a reference. Exercise duration was shorter for UAE vs. LE (207 +/- 67 vs. 514 +/- 224 s, P less than 0.05) even though the end-exercise VO2 was lower for UAE (9.3 +/- 1.1 vs. 30.8 +/- 3.2 ml.kg-1.min-1, P less than 0.05). Eight subjects had positive Ppl-Pga slopes and less negative end-inspiratory Ppl during UAE vs. LE (-11.8 +/- 6 vs. -19 +/- 7 cmH2O, P less than 0.05). This was not due to the lower VT's achieved during UAE, since at a similar VT, UAE resulted in a rightward and downward displacement of the Ppl-Pga slopes. Three of the subjects had irregular breathing rhythm and negative Ppl-Pga slopes as early as 1 min after initiation of UAE. They had shorter UAE duration and more dyspnea than the eight with positive Ppl-Pga slopes. In most subjects UAE decreases the ventilatory contribution of some of the inspiratory muscles of the rib cage as they have to partake in nonventilatory functions. This results in a shift of the dynamic work to the diaphragm and abdominal muscles of exhalation. In a few subjects UAE results in an irregular breathing pattern and very short exercise tolerance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abdominal muscles are the most important expiratory muscles for coughing. Spinal cord-injured patients have respiratory complications because of abdominal muscle weakness and paralysis and impaired ability to cough. We aimed to determine the optimal positioning of stimulating electrodes on the trunk for the noninvasive electrical activation of the abdominal muscles. In six healthy subjects, we compared twitch pressures produced by a single electrical pulse through surface electrodes placed either posterolaterally or anteriorly on the trunk with twitch pressures produced by magnetic stimulation of nerve roots at the T(10) level. A gastroesophageal catheter measured gastric pressure (Pga) and esophageal pressure (Pes). Twitches were recorded at increasing stimulus intensities at functional residual capacity (FRC) in the seated posture. The maximal intensity used was also delivered at total lung capacity (TLC). At FRC, twitch pressures were greatest with electrical stimulation posterolaterally and magnetic stimulation at T(10) and smallest at the anterior site (Pga, 30 +/- 3 and 33 +/- 6 cm H(2)O vs. 12 +/- 3 cm H(2)O; Pes 8 +/- 2 and 11 +/- 3 cm H(2)O vs. 5 +/- 1 cm H(2)O; means +/- SE). At TLC, twitch pressures were larger. The values for posterolateral electrical stimulation were comparable to those evoked by thoracic magnetic stimulation. The posterolateral stimulation site is the optimal site for generating gastric and esophageal twitch pressures with electrical stimulation.  相似文献   

15.
Costal strips of diaphragmatic muscle obtained from animals with elastase-induced emphysema generate maximum tension at significantly shorter muscle fiber lengths than muscle strips from control animals. The present study examined the consequences of alterations in the length-tension relationship assessed in vitro on the pressure generated by the diaphragm in vivo. Transdiaphragmatic pressure (Pdi) and functional residual capacity (FRC) were measured in 22 emphysematous and 22 control hamsters 4-5 mo after intratracheal injection of pancreatic elastase or saline, respectively. In 12 emphysematous and 12 control hamsters Pdi was also measured during spontaneous contractions against an occluded airway. To allow greater control over muscle excitation, Pdi was measured during bilateral tetanic (50 Hz) electrical stimulation of the phrenic nerves in 10 emphysematous and 10 control hamsters. Mean FRC in the emphysematous hamsters was 183% of the value in control hamsters (P less than 0.01). During spontaneous inspiratory efforts against a closed airway the highest Pdi generated at FRC tended to be greater in control than emphysematous hamsters. When control hamsters were inflated to a lung volume approximating the FRC of emphysematous animals, however, peak Pdi was significantly greater in emphysematous animals (70 +/- 6 and 41 +/- 8 cmH2O; P less than 0.05). With electrophrenic stimulation, the Pdi-lung volume curve was shifted toward higher lung volumes in emphysematous hamsters. Pdi at all absolute lung volumes at and above the FRC of emphysematous hamsters was significantly greater in emphysematous compared with control animals. Moreover, Pdi continued to be generated by emphysematous hamsters at levels of lung volume where Pdi of control subjects was zero.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The diaphragm and abdominal muscles can be recruited during nonrespiratory maneuvers. With these maneuvers, transdiaphragmatic pressures are elevated to levels that could potentially provide a strength-training stimulus. To determine whether repeated forceful nonrespiratory maneuvers strengthen the diaphragm, four healthy subjects performed sit-ups and biceps curls 3-4 days/wk for 16 wk and four subjects served as controls. The maximal transdiaphragmatic pressure was measured at baseline and after 16 wk of training. Maximum static inspiratory and expiratory mouth pressures and diaphragm thickness derived from ultrasound were measured at baseline and 8 and 16 wk. After training, there were significant increases in diaphragm thickness [2.5 +/- 0.1 to 3.2 +/- 0.1 mm (mean +/- SD) (P < 0.001)], maximal transdiaphragmatic pressure [198 +/- 21 to 256 +/- 23 cmH2O (P < 0.02)], maximum static inspiratory pressure [134 +/- 22 to 171 +/- 16 cmH2O (P < 0.002)], maximum static expiratory pressure [195 +/- 20 to 267 +/- 40 cmH2O (P < 0.002)], and maximum gastric pressure [161 +/- 5 to 212 +/- 40 cmH2O (P < 0.03)]. These parameters were unchanged in the control group. We conclude that nonrespiratory maneuvers can strengthen the inspiratory and expiratory muscles in healthy individuals. Because diaphragm thickness increased with training, the increase in maximal pressures is unlikely due to a learning effect.  相似文献   

17.
Transdiaphragmatic pressure (Pdi) and the rate of relaxation of the diaphragm (tau) were measured at functional residual capacity (FRC) in six normal seated subjects during single-twitch stimulation of both phrenic nerves. The latter were stimulated supramaximally with needle electrodes with square-wave impulses of 0.1-ms duration at 1 Hz before and after diaphragmatic fatigue produced by resistive loaded breathing. Constancy of chest wall configuration was achieved by monitoring the diameter of the abdomen and the rib cage with a respiratory inductive plethysmograph system. During control the peak Pdi generated during the phrenic stimulation amounted to 34.4 +/- 4.2 (SE) cmH2O and represented in each subject a fixed fraction (17%) of its maximal transdiaphragmatic pressure. After diaphragmatic fatigue the peak Pdi decreased by an average of 45%, amounting to 18.1 +/- 2.7 cmH2O 5 min after the fatigue run, and tau increased from 55.2 +/- 9 ms during control to 77 +/- 8 ms 5 min after the fatigue run. The decrease in peak Pdi and the increase in tau observed after the fatigue run persisted throughout the 30 min of the recovery period studied, the peak Pdi amounting to 18.4 +/- 2.8 and 18.9 +/- 3.3 cmH2O and tau to 81.3 +/- 5.7 and 88.7 +/- 10 ms at 15 and 30 min after the end of the fatigue run, respectively. It is concluded that diaphragmatic fatigue can be detected in man by bilateral phrenic stimulation with needle electrodes without any discomfort for the subject and that the decrease in diaphragmatic strength after fatigue is long lasting.  相似文献   

18.
Abdominal distension (AD) occurs in pregnancy and is also commonly seen in patients with ascites from various causes. Because the abdomen forms part of the "chest wall," the purpose of this study was to clarify the effects of AD on ventilatory mechanics. Airway pressure, four (vertical) regional pleural pressures, and abdominal pressure were measured in five anesthetized, paralyzed, and ventilated upright pigs. The effects of AD on the lung and chest wall were studied by inflating a liquid-filled balloon placed in the abdominal cavity. Respiratory system, chest wall, and lung pressure-volume (PV) relationships were measured on deflation from total lung capacity to residual volume, as well as in the tidal breathing range, before and 15 min after abdominal pressure was raised. Increasing abdominal pressure from 3 to 15 cmH2O decreased total lung capacity and functional residual capacity by approximately 40% and shifted the respiratory system and chest wall PV curves downward and to the right. Much smaller downward shifts in lung deflation curves were seen, with no change in the transdiaphragmatic PV relationship. All regional pleural pressures increased (became less negative) and, in the dependent region, approached 0 cmH2O at functional residual capacity. Tidal compliances of the respiratory system, chest wall, and lung were decreased 43, 42, and 48%, respectively. AD markedly alters respiratory system mechanics primarily by "stiffening" the diaphragm/abdomen part of the chest wall and secondarily by restricting lung expansion, thus shifting the lung PV curve as seen after chest strapping. The less negative pleural pressures in the dependent lung regions suggest that nonuniformities of ventilation could also be accentuated and gas exchange impaired by AD.  相似文献   

19.
We attempted to measure diaphragmatic tension by measuring changes in diaphragmatic intramuscular pressure (Pim) in the costal and crural parts of the diaphragm in 10 supine anesthetized dogs with Gaeltec 12 CT minitransducers. During phrenic nerve stimulation or direct stimulation of the costal and crural parts of the diaphragm in an animal with the chest and abdomen open, Pim invariably increased and a linear relationship between Pim and the force exerted on the central tendon was found (r greater than or equal to 0.93). During quiet inspiration Pim in general decreased in the costal part (-3.9 +/- 3.3 cmH2O), whereas it either increased or slightly decreased in the crural part (+3.3 +/- 9.4 cmH2O, P less than 0.05). Similar differences were obtained during loaded and occluded inspiration. After bilateral phrenicotomy Pim invariably decreased during inspiration in both parts (costal -4.3 +/- 6.4 cmH2O, crural -3.1 +/- 0.6 cmH2O). Contrary to the expected changes in tension in the muscle, but in conformity with the pressure applied to the muscle, Pim invariably increased during passive inflation from functional residual capacity to total lung capacity (costal +30 +/- 23 cmH2O, crural +18 +/- 18 cmH2O). Similarly, during passive deflation from functional residual capacity to residual volume, Pim invariably decreased (costal -12 +/- 19 cmH2O, crural -12 +/- 14 cmH2O). In two experiments similar observations were made with saline-filled catheters. We conclude that although Pim increases during contraction as in other muscles, Pim during respiratory maneuvers is primarily determined by the pleural and abdominal pressures applied to the muscle rather than by the tension developed by it.  相似文献   

20.
Assessment of transdiaphragmatic pressure in humans   总被引:8,自引:0,他引:8  
Maximal force developed by the diaphragm at functional residual capacity is a useful index to establish muscle weakness; however, great disparity in its reproducibility can be observed among reports in the literature. We evaluated five maneuvers to measure maximal transdiaphragmatic pressure (Pdimax) in order to establish best reproducibility and value. Thirty-five na?ve subjects, including 10 normal subjects (group 1), 12 patients with chronic obstructive pulmonary disease (group 2), and 13 patients with restrictive pulmonary disease (group 3), were studied. Each subject performed five separate maneuvers in random order that were repeated until reproducible values were obtained. The maneuvers were Mueller with (A) and without mouthpiece (B), abdominal expulsive effort with open glottis (C), two-step (maneuver C combined with Mueller effort) (D), and feedback [two-step with visual feedback of pleural (Ppl) and abdominal (Pab) pressure] (E). The greatest reproducible Pdimax values were obtained with maneuver E (P less than 0.01) (group 1: 180 +/- 14 cmH2O). The second best maneuvers were A, B, and D (group 1: 154 +/- 25 cmH2O). Maneuver C produced the lowest values. For all maneuvers, group 1 produced higher values than groups 2 and 3 (P less than 0.001), which were similar. The Ppl to Pdi ratio was 0.6 in maneuvers A and B, 0.4 in D and E, and 0.2 in C. We conclude that visual feedback of Ppl and Pab helped the subjects to elicit maximal diaphragmatic effort in a reproducible fashion. It is likely that the great variability of values in Pdimax previously reported are the result of inadequate techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号