首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triplex affinity interaction provides a new process for the purification of plasmid DNA, which is especially suited to meet the demands of a gene therapy use. We developed a method for the functionalization of a large pore affinity support suitable for this application. A 5-modified DNA oligonucleotide containing an aldehyde group was coupled to adipic acid hydrazide functionalized Sephacryl beads with a yield of 31% (over all immobilization yield 22.6% from starting oligonucleotide). The resulting selective and covalent immobilization of the ligand via a 16 atom, hydrophilic linker arm enables the oligonucleotide bases to freely bind to the target sequence. The proposed method provides affinity supports that might be used in large scale affinity purification of plasmid DNA.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

2.
Antibody immobilization on a solid surface is inevitable in the preparation of immunochips/sensors. Antibody-binding proteins such as proteins A and G have been extensively employed to capture antibodies on sensor surfaces with right orientations, maintaining their full functionality. Because of their synthetic versatility and stability, in general, small molecules have more advantages than proteins. Nevertheless, no small molecule has been used for oriented and specific antibody immobilization. Here is described a novel strategy to immobilize an antibody on various sensor surfaces by using a small antibody-binding peptide. The peptide binds specifically to the Fc domain of immunoglobulin G (IgG) and, therefore, affords a properly oriented antibody surface. Surface plasmon resonance analysis indicated that a peptide linked to a gold chip surface through a hydrophilic linker efficiently captured human and rabbit IgGs. Moreover, antibodies captured by the peptide exhibited higher antigen binding capacity compared with randomly immobilized antibodies. Peptide-mediated antibody immobilization was successfully applied on the surfaces of biosensor substrates such as magnetic particles and glass slides. The antibody-binding peptide conjugate introduced in this work is the first small molecule linker that offers a highly stable and specific surface platform for antibody immobilization in immunoassays.  相似文献   

3.
Covalent attachment of acid phosphatase enzyme, AP, on the surface of amorphous AlPO4, used as inorganic support, was studied. Immobilization of the enzyme was carried out by the ε-amino group of lysine residues through an aromatic Schiff's-base (linker A), as well as through an `azo' linkage to a p-OH-benzene group of tyrosine residues of the proteins (linker B). Activation of the supports in both cases was developed through the reaction of appropriate molecules with support surface –OH groups. The enzymatic activities in the 1-naphthyl phosphate hydrolysis of native, the different immobilized AP systems, and the filtrates, were obtained by a spectrophotometric method. According to the results, immobilization through linker A gave Eimm=99% while the residual activity, Eres, at different temperatures was in the range 0.2–0.8%. On the other hand, in the immobilization by linker B, through a diazonium salt, Eimm was in the range 35–46%, but residual and specific activity values, Eres and Espe, were between 19% and 46%. Thus, instead of linker A was more effective in the enzyme immobilization, the highest enzymatic activity after immobilization was obtained with linker B because with linker A a strong deactivation was developed.  相似文献   

4.
P Bigey  G Pratviel    B Meunier 《Nucleic acids research》1995,23(19):3894-3900
Manganese porphyrin-linker-triple-helix-forming oligonucleotide molecules were prepared and their ability to cleave in vitro a double-stranded DNA target present in the HIV-1 genome was studied. The nature of the linker is a determining factor of the cleavage efficiency. Cleavage yields as high as 80% were observed when the linker was a spermine residue and in the absence of a large excess of free spermine known to stabilize triplex structures. The hydrophobic nature of aliphatic diamine linker modified the cleaver-DNA interactions and reduced the efficiency of DNA cleavage.  相似文献   

5.
The 2-aminoethyl carbamate linker (ssH linker) exhibits high activity in modifying the 5′-termini of oligonucleotides; however, the ssH linker is not appropriate for 3′-terminal modification because it undergoes intramolecular trans-acylation under heat–aqueous ammonia conditions. We developed an N-(2-aminoethyl)carbamate linker (revH linker), in which the carbamate is oriented in the reverse direction relative to that in 2-aminoethyl carbamate. The revH linker was tolerant to heat–alkaline conditions and retained its high reactivity in conjugation with exogenous molecules. The 3′-revH linker was efficiently linked with the 5′-ssH linker at the termini of complementary double strands with a bifunctional molecule, producing a synthetic loop structure. An anti-microRNA oligonucleotide (AMO) was prepared from the chemical ligation of three-stranded 2′-O-methyl RNAs, and the AMO with two alkyl loops exhibited high inhibition activity toward miRNA function. The revH linker is not only useful for 3′-terminal modification of oligonucleotides but also expands the utility range in combination with the 5′-ssH linker.  相似文献   

6.
A DNA piezoelectric biosensing method for real-time detection of Escherichia coli O157:H7 in a circulating-flow system was developed in this study. Specific probes [a 30-mer oligonucleotide with or without additional 12 deoxythymidine 5′-monophosphate (12-dT)] for the detection of E. coli O157:H7 gene eaeA, synthetic oligonucleotide targets (30 and 104 mer) and PCR-amplified DNA fragments from the E. coli O157:H7 eaeA gene (104 bp), were used to evaluate the efficiency of the probe immobilization and hybridization with target DNA in the circulating-flow quartz crystal microbalance (QCM) device. It was found that thiol modification on the 5′-end of the probes was essential for probe immobilization on the gold surface of the QCM device. The addition of 12-dT to the probes as a spacer, significantly enhanced (P < 0.05) the hybridization efficiency (H%). The results indicate that the spacer enhanced the H% by 1.4- and 2-fold when the probes were hybridized with 30- and 104-mer targets, respectively. The spacer reduced steric interference of the support on the hybridization behavior of immobilized oligonucleotides, especially when the probes hybridized with relatively long oligonucleotide targets. The QCM system was also applied in the detection of PCR-amplified DNA from real samples of E. coli O157:H7. The resultant H% of the PCR-amplified double-strand DNA was comparable to that of the synthetic target T-104AS, a single-strand DNA. The piezoelectric biosensing system has potential for further applications. This approach lays the groundwork for incorporating the method into an integrated system for rapid PCR-based DNA analysis.  相似文献   

7.
We report a method to prepare a DNA–enzyme conjugate using histidine-tag (His-tag) chemistry. A DNA oligonucleotide was modified with nitrilotriacetate (NTA), whose Kd was approximately 10?6 (M?1) toward a His-tag present on a recombinant protein via the complexation of Ni2+. His-tagged alkaline phosphatase (His-AP) was used as the model enzyme. Enzyme immobilization on the microplate revealed the conjugation of His-AP and the NTA-modified DNA via an Ni2+ complex. SPR measurements also proved the conjugation of His-AP with the NTA-modified DNA via an Ni2+ complex. The DNA–enzyme conjugate was then used for the detection of thrombin using a DNA aptamer. The DNA-AP conjugate successfully amplified the binding signal between the DNA aptamer and the thrombin, and the signal was measured as the fluorescent intensity derived from the AP-catalyzed reaction. The detection limit was 11 nM. Finally, we studied the effect of the release of the immobilized His-AP from the microplate on the AP activity, because the present strategy used a cleavable linker for the conjugation and the enzyme immobilization. The DNase-catalyzed release of the immobilized His-AP resulted in a 1.7-fold higher AP activity than observed when the His-AP was surface-immobilized.  相似文献   

8.
High-density poly(ethylene glycol) (PEG) molecules are grafted onto Si surfaces in a brush-like configuration. We demonstrate that this surface is an excellent substrate for oligonucleotide immobilization. p-Maleimidophenyl isocyanate is used as a heterobifunctional cross-linker to tether thiol-modified oligonucleotides to terminal OH groups on the PEG brush. This approach gives excellent immobilization specificity and low background. The immobilized oligonucleotides show high sensitivity for the detection of complementary targets.  相似文献   

9.
An efficient method was developed to stretch DNA molecules on an atomically flat surface for AFM imaging. This method involves anchoring DNA molecules from their 5' ends to amino silanized mica surfaces. N-Succinimidyl6-[3'-(2-pyridyldithio) propionamido]hexanoate (LC-SPDP), a heterobifunctional cross-linker with a flexible spacer arm was used for this purpose. The immobilization process was carried out by introducing a thiol group to the 5' end of DNA by PCR. Thiolated molecules were then reacted with the cross linker to conjugate with its 2-pyridyl disulphide group via sulfhydryl exchange. The resulting complex was deposited on amino silanized mica where NHS-ester moiety of the cross linker reacted with the primary amino group on the surface. Samples were washed by a current of water and dried by an air jet in one direction parallel to the surface. DNA molecules were shown to be fully stretched in one direction on imaging them by AFM.  相似文献   

10.
The utility of catalyst-free azide-alkyne [3 + 2] cycloaddition for the immobilization of a variety of molecules onto a solid surface and microbeads was demonstrated. In this process, the surfaces are derivatized with aza-dibenzocyclooctyne (ADIBO) for the immobilization of azide-tagged substrates via a copper-free click reaction. Alternatively, ADIBO-conjugated molecules are anchored to the azide-derivatized surface. Both immobilization techniques work well in aqueous solutions and show excellent kinetics under ambient conditions. We report an efficient synthesis of aza-dibenzocyclooctyne (ADIBO), thus far the most reactive cyclooctyne in cycloaddition to azides. We also describe convenient methods for the conjugation of ADIBO with a variety of molecules directly or via a PEG linker.  相似文献   

11.
We synthesized a novel linker (1) with biotin, alkyne and amino groups for the identification of target proteins using a small molecule that contains an azide group (azide probe). The alkyne in the linker bound the azide probe via an azide-alkyne Huisgen cycloaddition. A protein cross-linker effectively bound the conjugate of the linker and an azide probe with a target protein. The covalently bound complex was detected by western blotting. Linker 1 was applied to a model system using an abscisic acid receptor, RCAR/PYR/PYL (PYL). Cross-linked complexes of linker 1, the azide probes and the target proteins were successfully visualized by western blotting. This method of target protein identification was more effective than a previously developed method that uses a second linker with biotin, alkyne, and benzophenone (linker 2) that acts to photo-crosslink target proteins. The system developed in this study is a method for identifying the target proteins of small bioactive molecules and is different from photo-affinity labelling.  相似文献   

12.
An anchor-chain molecular system was constructed for controlled orientation and high activity in enzyme immobilization. A streptavidin recognition peptide (streptag) coding sequence was fused to the 3' end of the phoA gene, which codes for E. coli alkaline phosphatase (EAP). Both the wild-type (WT) and the Asp-101 --> Ser (D1O1S) mutant were modified with the streptag sequence with or without the insertion of a flexible linker peptide [-(Gly-Ser)(5)-] coding sequence. The fused genes were cloned into the vector pASK75 and expressed in the periplasm of the host cell Escherichia coli SM547. The proteins were released by osmotic shock and purified by ion-exchange chromatography. Enzyme activities of all proteins were measured spectrophotometrically with rho-nitrophenyl phosphate as the substrate. Specific activities of D101S-streptag and D101S-linker-streptag enzymes were increased 25- or 34-fold over the WT, respectively. These fusion proteins were then immobilized on microtiter plates through streptag-streptavidin binding reaction. After immobilization, the D101S-linker-streptag enzyme displayed the highest residual activity and the ratio of enzyme activities of the linker to nonlinker enzymes was 8.4. These results show that the addition of a linker peptide provides a spacer so as to minimize steric hindrance between the enzyme and streptavidin. The method provides a solution for controlled enzyme immobilization with high recover activity, which is especially important in construction of biosensors, biochips, or other biodevices.  相似文献   

13.
Oligosaccharides are increasingly being recognized as important partners in receptor-ligand binding and cellular signaling. Surface plasmon resonance (SPR) is a very powerful tool for the real-time study of the specific interactions between biological molecules. We report here an advanced method for the immobilization of oligosaccharides in clustered structures for SPR and their application to the analysis of heparin-protein interactions. Reductive amination reactions and linker molecules were designed and optimized. Using mono-, tri-, or tetravalent linker compounds, we incorporated synthetic structurally defined disaccharide units of heparin and immobilized them as ligands for SPR. Their binding to an important hemostatic protein, von Willebrand factor (vWf), and its known heparin-binding domain was quantitatively analyzed. These multivalent ligand conjugates exhibited reproducible binding behavior, with consistency of the surface conditions of the SPR chip. This novel technique for oligosaccharide immobilization in SPR studies is accurate, specific, and easily applicable to both synthetic and naturally derived oligosaccharides.  相似文献   

14.
A new protocol that enables the immobilization of DNA probes on aminated micro-titer plates activated with aldehyde-dextran via an amino group artificially introduced in the 3' end of the oligonucleotide probe is reported in this work. The method is based on the use of hetero-functional-dextran as a long and multifunctional spacer arm covalently attached to an aminated surface capable of immobilizing DNA oligonucleotides. The immobilization occurred only via the amino introduced in the 3' end of the probe, with no implication of the DNA bases in the immobilization, ensuring that the full length of the probe is available for hybridization. These plates having immobilized oligonucleotide probes are able to hybridize complementary DNA target molecules. The tailor-made hetero-functional aldehyde-aspartic-dextran together with the chemical blocking of the remaining primary amino groups on the support using acetic anhydride avoid the nonspecific adsorption of DNA on the surface of the plates. Using these activated plates, (studying the effect of the probe concentration, temperature, and time of the plate activation on the achieved signal), thus, the covalent immobilization of the aminated DNA probe was optimized, and the sensitivity obtained was similar to that achieved using commercial biotin-streptavidin systems. The new DNA plates are stable under very drastic experimental conditions (90% formamide, at 100 degrees C for 30 min or in 100 mM NaOH).  相似文献   

15.
A convenient and efficient method for three-dimensional immobilizing oligonucleotides on glass was developed using oligonucleotide derivatives bearing a polyamine linker (PA-oligo conjugates). Polyamine (polylysine, poly(lysine, phenylalanine), polyethyleneimine) residues stipulate durable fixation of such conjugates to the glass surface with a high yield (90-95%). A DNA fragment (414-mer) is hybridized specifically to an immobilized oligonucleotide.  相似文献   

16.
Zhao ZX  Qiao MQ  Yin F  Shao B  Wu BY  Wang YY  Wang XS  Qin X  Li S  Yu L  Chen Q 《Biosensors & bioelectronics》2007,22(12):3021-3027
Hydrophobins are a family of natural self-assembling proteins with high biocompability, which are apt to form strong and ordered assembly onto many kinds of surfaces. These physical-chemical and biological properties make hydrophobins suitable for surface modification and biomolecule immobilization purposes. A class II hydrophobin HFBI was used as enzyme immobilization matrix on platinum electrode to construct amperometric glucose biosensor. Permeability of HFBI self-assembling film was optimized by selecting the proper HFBI concentration for electrode modification, in order to allow H2O2 permeating while prevent interfering compounds accessing. HFBI self-assembly and glucose oxidase (GOx) immobilization was monitored by quartz crystal microbalance (QCM), and characterization of the modified electrode surface was obtained by scanning electron microscope (SEM). The resulting glucose biosensors showed rapid response time within 6 s, limits of detection of 0.09 mM glucose (signal-to-noise ratio = 3), wide linear range from 0.5 to 20 mM, high sensitivity of 4.214 × 10−3 A M−1 cm−2, also well selectivity, reproducibility and lifetime. The all-protein modified biosensor exhibited especially high efficiency of enzyme utilization, producing at most 712 μA responsive current for per unit activity of GOx. This work provided a promising new immobilization matrix with high biocompatibility and adequate electroactivity for further research in biosensing and other surface functionalizing.  相似文献   

17.
DNA microarrays with PAMAM dendritic linker systems   总被引:6,自引:4,他引:2       下载免费PDF全文
The DNA microarray-based analysis of single nucleotide polymorphisms (SNPs) is important for the correlation of genetic variations and individual phenotypes, and for locating disease-causing genes. To facilitate the development of surfaces suitable for immobilization of oligonucleotides, we report here a novel method for the surface immobilization of DNA using pre-fabricated polyamidoamine (PAMAM) starburst dendrimers as mediator moieties. Dendrimers containing 64 primary amino groups in their outer sphere are covalently attached to silylated glass supports and, subsequently, the dendritic macromolecules are modified with glutaric anhydride and activated with N-hydroxysuccinimide. As a result of the dendritic PAMAM linker system the surfaces reveal both a very high immobilization efficiency for amino-modified DNA-oligomers, and also a remarkable high stability during repeated regeneration and re-using cycles. The performance of dendrimer-based DNA microarrays in the discrimination of SNPs is demonstrated.  相似文献   

18.
Methods for rapid surface immobilization of bioactive small molecules with control over orientation and immobilization density are highly desirable for biosensor and microarray applications. In this Study, we use a highly efficient covalent bioorthogonal [4+2] cycloaddition reaction between trans-cyclooctene (TCO) and 1,2,4,5-tetrazine (Tz) to enable the microfluidic immobilization of TCO/Tz-derivatized molecules. We monitor the process in real-time under continuous flow conditions using surface plasmon resonance (SPR). To enable reversible immobilization and extend the experimental range of the sensor surface, we combine a non-covalent antigen-antibody capture component with the cycloaddition reaction. By alternately presenting TCO or Tz moieties to the sensor surface, multiple capture-cycloaddition processes are now possible on one sensor surface for on-chip assembly and interaction studies of a variety of multi-component structures. We illustrate this method with two different immobilization experiments on a biosensor chip; a small molecule, AP1497 that binds FK506-binding protein 12 (FKBP12); and the same small molecule as part of an immobilized and in situ-functionalized nanoparticle.  相似文献   

19.
Abstract

Incorporation of an azobenzene-4,4′-diamide group via a linker arm into the 3′-hydroxyl function of one oligonucleotide segment and the 5′-OH of other oligonucleotide has been described. The binding of the oligonucleotides containing the azobenzene linker was investigated by UV melting behaviors. The azobenzene linker has been shown to be useful as an effective bridge for stabilizing hairpin duplex and triplex.  相似文献   

20.
A convenient and efficient method for three‐dimensional immobilizing oligonucleotides on glass was developed using oligonucleotide derivatives bearing a polyamine linker (PA‐oligo conjugates). Polyamine (polylysine, poly(lysine, phenylalanine), polyethyleneimine) residues stipulate durable fixation of such conjugates to the glass surface with a high yield (90–95%). A DNA fragment (414‐mer) is hybridized specifically to an immobilized oligonucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号