首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sugars and sugar alcohols present in extracts of the wood-rotting mushroom Schizophyllum commune were identified by paper chromatography during fruiting, basidiospore germination, and growth of vegetative mycelium. Homokaryotic fruitbodies and dikaryotic fruits derived from several compatible matings of S. commune contained mannitol and arabitol. Basidiospores shed from dikaryotic fruits also contained mannitol and arabitol while the latter disappeared during spore germination. Vegetative mycelium (strain 699) contained glucose, fructose, mannitol and glycerol while these compounds as well as arabitol occurred in mycelium of strain 845. Polyols are not, therefore, associated exclusively with the sporulation process in S. commune.  相似文献   

2.
Summary Intracellular arabitol and mannitol accumulation is under nutritional and temporal control during arthrospore germination, vegetative growth, and arthrospore formation in Geotrichum. Arabitol is not produced if the glucose concentration in the medium is low. Arabitol is produced in large quantities in the cells if the carbon source is acetate or if the glucose level is above 10%. Low levels of glucose do not repress acetate induction of arabitol formation. Arabitol began to accumulate during spore swelling and vegetative growth in the presence of acetate. Mannitol appeared to serve as a carbon and energy reserve during starvation and arthrospore germination; the concentration of mannitol in vegetative cells remained barely detectable until sporulation commenced.This research was supported by National Science Foundation Grant GB-8327 and Public Health Service Grant Al-04603-09 to D.J.N.  相似文献   

3.
Summary The yeastZygosaccharomyces rouxii ATCC 12572 was selected for its ability to produce appreciable levels of ethanol and of various polyols from concentrated glucose media (20 %, w/v).Z. rouxii was shown to yield large quantities of glycerol and of the mixture arabitol + mannitol. Good agitation combined with appropriate aeration (1 vvm) allowedZ. rouxii to utilize glucose readily leading to high polyol production. Depending on the fermentation conditions used,Z. rouxii ATCC 12572 will give either ethanol or various polyols as main fermentation product(s).  相似文献   

4.
《Experimental mycology》1991,15(3):279-282
The metabolism of glucose in resting cells ofCandida albicans was studied by13C NMR spectrometry using13C-labeled glucose. Under aeration, the formation of ethanol, glycerol, arabitol, mannitol, and trehalose was observed. The addition of inhibitors of the respiratory chain or the omission of aeration resulted in a total loss of formation of those polyols and trehalose, with ethanol being the only detectable product. Thus, respiration seems to favor the production of polyols including glycerol, as well as that of trehalose. With regard to glycerol, this finding is in contrast with the previous observation inSaccharomyces cerevisiae that oxygenation represses its production.  相似文献   

5.
The temporal depletion and accumulation of polyols were investigated in the fungus Geotrichum candidum. The major intracellular polyols were tentatively identified by paper chromatography as mannitol and arabitol. Inositol was also present in small quantities, and trehalose was also detected in appreciable concentrations.Germination and vegetative growth depended on the type and concentration of the sole exogenous carbon source. Mannitol occurred in arthrospores at 9.4% of the dry weight after several days growth in 2% (w/v) glucose solid medium, and became depleted during germination and vegetative growth in liquid medium containing 2% (w/v) glucose, 2% (w/v) sodium acetate or 25% (w/v) glucose as sole carbon source. This hexitol latter accumulated during arthrosporulation. The depletion and accumulation of ethanol-soluble carbohydrate believed to be primarily trehalose was temporally similar to that of mannitol. Arabitol accumulated intracellularly during germination and vegetative growth in sodium acetate medium and 25% glucose medium. This pentitol was not detected intracellularly at any culture age during growth in 2% glucose medium.Prolonged incubation of the culture in 25% glucose medium after stationary phase was reached resulted in the gradual disappearance of arabitol from the arthrospores simultaneously with an increase in intracellular mannitol. In comparison, ethanol-soluble carbohydrate did not change with prolonged incubation in this medium.  相似文献   

6.
Summary The formation of 10 g polyols/L (glycerol, arabitol, xylitol) during L-lactic acid synthesis byRhizopus arrhizus was observed. Consumption of polyols after glucose exhaustion was discovered resulting in a subsequent rise in the lipid content of the mycelium. Lactate utilization was not detected.  相似文献   

7.
Growth and l-lactic acid production on 24 different carbohydrates and polyols (glycerol, mannitol and sorbitol) by Rhizopus arrhizus CCM 8109 were determined. The d- but not the l-forms of xylose, fructose, galactose, mannose, glucose, cellobiose, maltose and sucrose and partially hydrolysed starch were converted to l-lactic acid. Changes in lipid formation and fatty acid composition were detected in biomass grown on the different sugars. In the presence of polyols, growth and considerable production of lipids were observed with little or no lactate production. Invertase was mainly associated with the mycelium during growth on sucrose, whereas glucoamylase and -amylase were produced extracellularly during growth on starch.The authors are with the Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Polytechnical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic  相似文献   

8.
Summary Glycerol and arabitol were the main polyols accumulated by Zygosaccharomyces rouxii in continuous culture but the intracellular and extracellular concentrations of the polyols varied with the dilution rate and osmoticum used to adjust the water activity (aw) to 0.960. When the aw was adjusted with NaCl, glycerol was the main polyol accumulated intracellularly whereas glycerol and arabitol were accumulated when polyethylene glycol (PEG) 400 was used. The extracellular glycerol and arabitol concentrations at 0.960 aw (NaCl or PEG 400) were similar or decreased relative to cultures at 0.998 aw. Compared to steady-state cultivation at 0.998 aw, the yeast retained at 0.960 aw (NaCl or PEG 400) a greater proportion of the total glycerol intracellularly against an increased concentration ratio without significantly greater production of glycerol. Arabitol was only significant in osmoregulation when cultivated at 0.960 aw (PEG 400). The intracellular glycerol concentration was insufficient to balance the aw across the membrane, but an equilibrium could be achieved under certain conditions if arabitol was also osmotically active. Offprint requests to: P. J. van Zyl  相似文献   

9.
Na+, K+ and the ratio of Na+/K+ were higher in cells of the halotolerant Aspergillus repens grown with 2 M NaCl than without NaCl. The osmolytes, proline, glycerol, betaine and glutamate, did not affect the Na+/K+ ratio, nor the polyol content of cells under any conditions. The concentrations of polyols, consisting of glycerol, arabitol, erythritol and mannitol, changed markedly during growth, indicating that they have a crucial role in osmotic adaptation.  相似文献   

10.
Glycerol production by a highly glycerol-producing local isolate (Eurotium amstelodami) and a standard reference isolate (Aspergillus wentii) was markedly enhanced by high saline media. Glycerol concentration depended on the external osmotic. Thus, the highest glycerol concentration was found in the presence of NaCl, followed by KCl, with considerably lower values for MgCl2 and CaCl2 saline media. With glucose (5–50%) used as a nonionic osmotic, low levels of glycerol were obtained and the main pool of polyols was mannitol. Glycerol production was gradually increased with the increase of NaCl concentration of cheese whey, reaching maxima by both organisms when whey was supplemented with 8% NaCl (total of 16% NaCl). The quantity of glycerol produced byA. wentii was twice higher than that obtained byE. amstelodami on whey treated with 8% NaCl.  相似文献   

11.
For the first time, the effects of varying osmotic and matric potential on fungal radial growth and accumulation of polyols were studied in three isolates of Pochonia chlamydosporia. Fungal radial growth was measured on potato dextrose agar modified osmotically using potassium chloride or glycerol. PEG 8000 was used to modify matric potential. When plotted, the radii of the colonies were found to grow linearly with time, and regression was applied to estimate the radial growth rate (mm day?1). Samples of fresh mycelia from 25-day-old cultures were collected and the quantity (mg g?1 fresh biomass) of four polyols (glycerol, erythritol, arabitol and mannitol) and one sugar (glucose) was determined using HPLC. Results revealed that fungal radial growth rates decreased with increased osmotic or matric stress. Statistically significant differences in radial growth were found between isolates in response to matric stress (P<0.006) but not in response to osmotic stress (P=0.759). Similarly, differences in the total amounts of polyols accumulated by the fungus were found between isolates in response to matric stress (P<0.001), but not in response to osmotic stress (P=0.952). Under water stress, the fungus accumulated a combination of different polyols important in osmoregulation, which depended on the solute used to generate the stress. Arabitol and glycerol were the main polyols accumulated in osmotically modified media, whereas erythritol was the main polyol that was accumulated in media amended with PEG. The results found that Pochonia chlamydosporia may use different osmoregulation mechanisms to overcome osmotic and matric stresses.  相似文献   

12.
Summary The kinetics, nutritional requirements and inhibitor properties of basidiospore germination in the wood-rotting mushroom Schizophyllum commune were investigated. Measurements of changes in absorbancy and dry weight showed a lag period of approximately 15–20 hrs, followed by an abrupt increase in the rate of both processes. Individual basidiospore elongation also showed a lag phase and population changes were heterogenous in this regard.Carbohydrates active for basidiospore germination were grouped into four categories. Those sugars active between 15 and 20 hrs included glycogen, turanose, cellobiose, maltose, sucrose, glucose, fructose, mannose, galactose and xylose. Several sugar alcohols were only active between 30 and 60 hrs incubation and these included mannitol, sorbitol, ribitol, xylitol, arabitol, erythritol and glycerol. A third category of carbohydrates active for germination required prolonged incubation between 30 hrs and 7 days and included lactose, sorbose, raffinose, melezitose, trehalose, ribose and melibiose. Compounds without activity after 7 days included galactitol, inositol, acetate, succinate, gluconate, citrate, fumarate, rhamnose, fucose and inulin.Nitrogen sources active in basidiospore germination included complex organic nitrogenous substrates, asparagine, glutamine, arginine, urea and various ammonium salts.Germination was inhibited by cycloheximide, l-ethionine, p-fluoro-dl-phenylalanine, sodium azide, 2,4-dinitrophenol, phenylmercuric acetate and 2-deoxy-d-glucose. Alkali as a trapping agent arrested germination in glucose-(NH4)2SO4 medium but was without ill-effect in glucose peptone broth.  相似文献   

13.
Carbohydrate concentrations in the marginal hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC. were measured in north Wales, U.K. using gas chromatography. Ribitol, arabitol, and mannitol were the most abundant carbohydrates while α- glucose β-glucose, fructose, sucrose, and trehalose were present in smaller amounts. The concentrations of arabitol, ribitol, mannitol, fructose, and α-glucose were greater in the areolae while the concentration of trehalose was greater in the hypothallus. Concentrations of carbohydrates varied little between sample days. Concentrations of polyols in the hypothallus were not correlated with those in the areolae. These results suggest: 1) the hypothallus has a lower demand for carbohydrates than the areolae or there is limited transport from areolae to hypothallus, 2) increased trehalose in the non-lichenised hypothallus may be an adaptation to withstand stress and desiccation, and 3) polyols are partitioned differently in the hypothallus and areolae.  相似文献   

14.
AIM: To evaluate the effect of modifications of water activity (aw 0. 996-0.92) of a molasses medium with different solutes (glycerol, glucose, NaCl, proline or sorbitol) on growth, intracellular water potentials (psi(c)) and endogenous accumulation of polyols/sugars in the biocontrol yeast Candida sake. METHODS AND RESULTS: Modification of solute stress significantly influenced growth, psi(c) and accumulation of sugars (glucose/trehalose) and polyols (glycerol, erythritol, arabitol and mannitol) in the yeast cells. Regardless of the solute used to modify aw, growth was always decreased as water stress increased. Candida sake cells grew better in glycerol- and proline-amended media, but were sensitive to NaCl. The psi(c) measured using psychrometry showed a significant effect of solutes, aw and time. Cells from the 0.96 aw NaCl treatment presented the lowest psic value (- 5.20 MPa) while cells from unmodified media (aw = 0. 996) had the highest value (- 0.30 MPa). In unmodified medium, glycerol was the predominant reserve accumulated. Glycerol and arabitol were the major compounds accumulated in media modified with glucose or NaCl. In proline media, the concentration of arabitol increased. In glycerol- and sorbitol-amended media, the concentration of glycerol rose. Some correlations were obtained between compatible solutes and psi(c). CONCLUSIONS AND SIGNIFICANCE: This study demonstrates that subtle changes in physiological parameters significantly affect the endogenous contents of C. sake cells. It may be possible to utilize such physiological information to develop biocontrol inocula with improved quality.  相似文献   

15.
Glycerol is a major by-product from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotolerant, were first screened in this study. No strains were found to produce large amounts of xylitol as the dominant metabolite. Some produced polyol mixtures that might present difficulties to downstream separation and purification. Several Debaryomyces hansenii strains produced arabitol as the predominant metabolite with high yields, and D. hansenii strain SBP-1 (NRRL Y-7483) was chosen for further study on the effects of several growth conditions. The optimal temperature was found to be 30°C. Very low dissolved oxygen concentrations or anaerobic conditions inhibited polyol yields. Arabitol yield improved with increasing initial glycerol concentrations, reaching approximately 50% (w/w) with 150 g/L initial glycerol. However, the osmotic stress created by high salt concentrations (≥50 g/L) negatively affected arabitol production. Addition of glucose and xylose improved arabitol production while addition of sorbitol reduced production. Results from this work show that arabitol is a promising value-added product from glycerol using D. hansenii SBP-1 as the producing strain.  相似文献   

16.
The biocontrol agent Candida sake was cultured on either an unmodified molasses-based medium (water activity, a(w) 0.996) or on water stressed media produced by the addition of glycerol, glucose, NaCl, sorbitol, or proline to 0.98, and 0.96 a(w) for 24, 48, and 72 h, to study their impact on subsequent cell viability, and on concentrations of endogenous sugars (trehalose and glucose) and polyols (glycerol, erythritol, arabitol, and mannitol). The viability of cells of different ages cultured on these media was evaluated on NYDA medium with freely available water (a(w) 0.995), and on medium modified with polyethylene glycol to a(w) 0.95. Regardless of solute used, viable counts of cells grown on molasses-based medium (a(w) 0.98) were equal to or higher than those obtained from the medium with water freely available. The amino acid proline stimulated growth at 10% concentration. In contrast, water stress induced by addition of NaCl, glucose, or sorbitol at a(w) 0.96 caused a significant reduction in viable counts. Older cultures were more resistant to water stress. Glycerol and arabitol were the main solutes accumulated by C. sake cells in response to lowered a(w). Intracellular concentration of these polyols depended more on the solute used to adjust the a(w) than on the a(w) itself. Candida sake was more resistant to water stress with higher intracellular concentration of glycerol and erythritol.  相似文献   

17.
The entomopathogenic fungus Beauveria bassiana was grown in 1% (wt/vol) gelatin-liquid media singly supplemented with a monosaccharide (glucose or fructose), a disaccharide (maltose or trehalose), a polyol (glycerol, mannitol, or sorbitol), or the amino sugar N-acetyl-d-glucosamine. The relative contributions of the carbohydrate, protein, and water contents in the fungal biomass were determined. Carbohydrates composed 18 to 42% of the mycelial dry weight, and this value was lowest in unsupplemented medium and highest in medium supplemented with glucose, glycerol, or trehalose. Biomass production was highest in liquid cultures supplemented with trehalose. When liquid cultures were grown in medium supplemented with 0 to 1% (wt/vol) glucose, trehalose, or N-acetyl-d-glucosamine, there was an increase in the biomass production and the contribution of carbohydrate to mycelial dry weight. Regardless of the glucose concentration in the culture, water content of the mycelia remained about 77.5% (wt/wt). Mycelial storage carbohydrates were determined by capillary gas chromatography. In gelatin-liquid medium supplemented with 1% (wt/vol) glucose, B. bassiana stored glycogen (12.0%, wt/dry wt) and the polyols mannitol (2.2%), erythritol (1.6%), glycerol (0.4%), and arabitol (0.1%). Without glucose, B. bassiana stored glycogen (5.4%), mannitol (0.8%), glycerol (0.6%), and erythritol (0.6%) but not arabitol. To our knowledge, this is the first report of carbohydrate storage in an entomopathogenic fungus, and the results are discussed in relation to other fungi and the potential implications to commercial formulation and insect-fungus interactions.  相似文献   

18.
Résumé L’analyse chromatographique du mycélium et du milieu de culture deP. brevi-compactum a permis d’identifier plusieurs substances ternaires nouvelles, produites par la moisissure: le fructose, le mannitol, l’arabitol ou l’adonitol, et le glycérol. Les résultats obtenus font l’objet d’une discussion.
Summary Chromatographic analysis ofP. brevi-compactum mycelium and culture medium has revealed different new ternary substances produced by that mould: fructose, mannitol, arabitol or adonitol and glycerol.
  相似文献   

19.
The biocontrol yeast Pichia anomala J121 prevents mould growth during the storage of moist grain under low oxygen/high carbon dioxide conditions. Growth and metabolite formation of P. anomala was analyzed under two conditions of oxygen limitation: (a) initial aerobic conditions with restricted oxygen access during the growth period and (b) initial microaerobic conditions followed by anaerobiosis. Major intra- and extracellular metabolites were analyzed by high-resolution magic-angle spinning (HR-MAS) NMR and HPLC, respectively. HR-MAS NMR allows the analysis of major soluble compounds inside intact cells, without the need for an extraction step. Biomass production was higher in treatment (a), whereas the specific ethanol production rate during growth on glucose was similar in both treatments. This implies that oxygen availability affected the respiration and not the fermentation of the yeast. Following glucose depletion, ethanol was oxidized to acetate in treatment (a), but continued to be produced in (b). Arabitol accumulated in the culture substrate of both treatments, whereas glycerol only accumulated in treatment (b). Trehalose, arabitol, and glycerol accumulated inside the cells in both treatments. The levels of these metabolites were generally significantly higher in treatment (b) than in (a), indicating their importance for P. anomala during severe oxygen limitation/anaerobic conditions.  相似文献   

20.
Aureobasidium pullulans produced extracellularly considerable amounts of polyols in the media with sucrose, glucose, fructose and mannose as sole carbon source during the late exponential and stationary phase of growth. The maximum yield of polyol was about 23% in the 20%(w/v) sucrose medium, of which mannitol was the main polyol associated with minute quantities of glycerol. Stress solutes such as NaCl and KCl did not promote polyol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号