首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction.  相似文献   

2.
Biosynthesis of the undersulfated proteoglycan found in brachymorphic mouse (bm/ bm) cartilage has been investigated. Similar amounts of cartilage proteoglycan core protein, as measured by radioimmune inhibition assay, and comparable activity levels of four of the glycosyltransferases requisite for synthesis of chondroitin sulfate chains were found in cartilage homogenates from neonatal bm/bm and normal mice, suggesting normal production of glycosylated core protein acceptor for sulfation. When incubated with 35S-labeled 3′-phosphoadenosine 5′-phosphosulfate (PAPS), bm/bm cartilage extracts showed a higher than control level of sulfotransferase activity. In contrast, when synthesis was initiated from ATP and 35SO42?, mutant cartilage extracts showed lower incorporation of 35SO42? into endogenous chondroitin sulfate proteoglycan (19% of control level) and greatly reduced formation of PAPS (10% of control level). Results from coincubations of normal and mutant cartilage extracts exhibited intermediate levels of sulfate incorporation into PAPS and endogenous acceptors, suggesting the absence of an inhibitor for sulfate-activating enzymes or sulfotransferases. Degradation rates of 35S]PAPS and of 35S-labeled adenosine 5′-phosphosulfate (APS) were comparable in bm/bm and normal cartilage extracts. Specific assays for both ATP sulfurylase (sulfate adenylyltransferase; ATP:sulfate adenylyltransferase, EC 2.7.7.4) and APS kinase (adenylylsulfate kinase; ATP:adenylylsulfate 3′-phosphotransferase, EC 2.7.1.25) showed decreases in the former (50% of control) and the latter (10–15% of control) enzyme activities in bm/bm cartilage extracts. Both enzyme activities were reduced to intermediate levels in extracts of cartilage from heterozygous brachymorphic mice (ATP-sulfurylase, 80% of control; APS kinase, 40–70% of control). Furthermore, the moderate reduction in ATP sulfurylase activity in bm/bm cartilage extracts was accompanied by increased lability to freezing and thawing of the residual activity of this enzyme. These results indicate that under-sulfation of chondroitin sulfate proteoglycan in bm/bm cartilage is due to a defect in synthesis of the sulfate donor (PAPS), resulting from diminished activities of both ATP sulfurylase and APS kinase, although the reduced activity of the latter enzyme seems to be primarily responsible for the defect in PAPS synthesis.  相似文献   

3.
Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison of staining intensity of the GAG chains and syndecan core protein suggests variability among cells in the attachment of GAG chains to the core protein. Characterization of purified syndecan confirms the enhanced addition of chondroitin sulfate in TGF-beta: (a) radiosulfate incorporation into chondroitin sulfate is increased 6.2-fold in this proteoglycan fraction and heparan sulfate is increased 1.8-fold, despite no apparent increase in amount of core protein per cell, and (b) the size and density of the proteoglycan are increased, but reduced by removal of chondroitin sulfate. This is shown in part by treatment of the cells with 0.5 mM xyloside that blocks the chondroitin sulfate addition without affecting heparan sulfate. Higher xyloside concentrations block heparan sulfate as well and syndecan appears at the cell surface as core protein without GAG chains. The enhanced amount of GAG on syndecan is partly attributed to an increase in chain length. Whereas this accounts for the additional heparan sulfate synthesis, it is insufficient to explain the total increase in chondroitin sulfate; an approximately threefold increase in chondroitin sulfate chain addition occurs as well, confirmed by assessing chondroitin sulfate ABC lyase (ABCase)-generated chondroitin sulfate linkage stubs on the core protein. One of the effects of TGF-beta during embryonic tissue interactions is likely to be the enhanced synthesis of chondroitin sulfate chains on this cell surface proteoglycan.  相似文献   

4.
Chondrocytes obtained from epiphyseal cartilage of fetal guinea pigs or ear cartilage of young rabbits were cultured in monolayer. The influence of colchicine, cytochalasin B, and p-nitrophenyl-β-d-xylopyranoside on secretion of proteoglycans was investigated. Radioactive sulfate was used as a precursor. As observed previously in other systems, β-d-xylosides initiated the synthesis of free chondroitin sulfate chains, competing with the endogenous proteoglycan core protein acceptor. The molecular weights of the chondroitin sulfate chains synthesized both on the xyloside and on the core-protein acceptor in maximally stimulated cells were similar and significantly lower than in proteoglycans synthesized in the absence of xyloside. The size of the chondroitin sulfate chains synthesized on the xyloside was inversely related to the concentration of this compound. This finding suggests that the chain length is dependent on the ratio between available acceptor and chain-lengthening enzymes or precursors. Cytochalasin B, a microfilament-modifying agent, inhibited proteoglycan synthesis, without any effect on secretion. Cells treated with cytochalasin B could be stimulated with β-d-xyloside to synthesize free chondroitin sulfate chains to the same relative degree as cells with intact microfilaments. Colchicine, an antimicrotubular agent, partially inhibited synthesis and secretion of proteoglycan. However, cells treated with colchicine could be stimulated with β-d-xyloside to synthesize and secrete free chondroitin sulfate chains to about the same relative degree as cells with intact microtubules. The data suggest that microtubules may have a facilitatory rather than an obligatory role in the secretion of proteoglycans and that at least part of the effect of colchicine is located at or after the site of glycosaminoglycan synthesis.  相似文献   

5.
The effect of nitrophenyl-beta-D-xyloside (xyloside), a synthetic initiator of glycosaminoglycan synthesis, on proteoglycan and glycosaminoglycan synthesis by a basement membrane producing tumor was studied. While xyloside markedly stimulated the formation of chondroitin sulfate chains, it depressed the formation of a basement membrane heparan sulfate proteoglycan and caused only little formation of free heparan sulfate chains. However, when the synthesis of the core protein of the proteoglycan was inhibited by cycloheximide, heparan sulfate chains were produced by xyloside treatment. These heparan sulfate chains had a sulfate content higher than that of heparan sulfate found on the proteoglycan. The data indicate that xyloside can substitute for the heparan sulfate initiation site on the core protein of the proteoglycan and that this initiation is enhanced in the absence of core protein. This suggests that under normal conditions the formation of heparan sulfate chains may be tightly linked to the production of the core protein.  相似文献   

6.
Biosynthesis of cartilage proteoglycan was examined in a model system of cultured chondrocytes from a transplantable rat chondrosarcoma. Extensive modification with the addition of chondroitin sulfate glycosaminoglycan, N-linkcd oligosac-charide, and O-linked oliogosaccharide is required to convert a newly synthesized core protein precursor into a proteoglycan. Kinetic analyses revealed the presence of a large pool of core protein precursor (t1/2 ~ 90 min) awaiting completion into proteoglycan. The large t1/2 of this pool allowed kinetic labeling experiments with a variety of radioactive precursors to distinguish between early biosynthetic events associated primarily with the rough endoplasmic reticulum from late events associated primarily with the Golgi apparatus. The results of a series of experiments indicated that the addition of N-linked oligosaccharide chains occurs early in the biosynthetic process in association with the rough endoplasmic reticulum, whereas the initiation and completion of O-linked oligosaccharides occurs much later, at about the same time as chondroitin sulfate synthesis. This also indicated that keratan sulfate chains, when present in the completed molecule, are added in the Golgi apparatus, as they are probably built on oligosaccharide primers closely related to the O-oligosaccharide chains. Furthermore, when 3H-glucose was used as the precursor, the entry of label into xylose, the linkage sugar between the core protein and the chondroitin sulfate chain, was found to occur within 5 min of the entry of label into galactose and galactosamine in the remainder of the chondroitin sulfate chain. This indicated that the initiation and completion of the chondroitin sulfate chain occurs late in the pathway probably entirely in the Golgi apparatus. Thus, proteoglycan synthesis can be described as occurring in two stages in this system, translation and N-glycosylation of a core protein precursor which has a long half-life in the rough endoplasmic reticulum, followed by extensive rapid modification in the Golgi complex in which the majority of glycosaminoglycan and oligosaccharide chains are added to the core protein precursor with subsequent rapid secretion into the extracellular matrix.  相似文献   

7.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A microsomal preparation from chick embryo epiphyseal cartilage was incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form [14C] chondroitin-labeled proteoglycan. Two [14C]proteoglycan populations were obtained which differed in size, [14C]glycosaminoglycan content, and susceptibility to alkali. One population of [14C]proteoglycan appeared near the void volume on Sepharose 2B, while the other population was smaller, similar in size to monomer proteoglycan. The larger [14C]proteoglycan contained long [14C]chondroitin chains added to short primers; these chains were in part resistant to alkali cleavage from protein. The smaller [14C]proteoglycan contained mainly [14C]chondroitin chains of intermediate length added to endogenous chondroitin sulfate; these chains were all susceptible to alkali cleavage from protein. The larger [14C]proteoglycan may represent a precursor proteoglycan present at the site of glycosaminoglycan chain synthesis.  相似文献   

9.
A chondroitin sulfate-dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by beta-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

10.
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis. Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).  相似文献   

11.
Previous studies showed that cultures of chick limb bud mesenchymal cells plated at high density, to maximize chondrogenic expression, had a much reduced extracellular matrix around chondrocytes when exposed to 4-methyl-, umbelliferyl-β-d-xyloside. The majority of newly synthesized chondroitin sulfate chains were found in the culture medium presumably bound to the xyloside as opposed to their normal deposition on the core protein of proteoglycan. The question remained open as to whether the development of an abnormal matrix affected the synthesis of extracellular deposition of other cartilage-specific macromolecules. We have analyzed, both morphologically and biochemically, the synthesis and deposition of Type I and Type II collagen by β-d-xyloside-treated cultures of limb mesenchymal cells. While the rate of collagen synthesis per plate and its extracellular accumulation after 8 days in culture were reduced to some extent, the ratios of Type II to Type I collagen and the morphological distribution of these macromolecules were not affected by exposure to β-d-xyloside. We conclude that the expression of the cartilage-specific Type II collagen during chondrogenic differentiation is, although reduced, qualitatively not dependent on the amount of extracellular chondroitin sulfate chains attached to matrix-associated proteoglycan core protein. However, prolonged exposure of limb bud cells to xylosides leads to the formation of a chondroitin sulfate- and collagen-deficient matrix which, in turn, reduces the capacity of limb bud cells to synthesize Types I and II collagen.  相似文献   

12.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

13.
Synthesis and structure of proteoglycan core protein   总被引:2,自引:0,他引:2  
Studies of the structure and synthesis of cartilage proteoglycan core protein have been carried out. Deglycosylation of completed, secreted proteoglycan by HF-pyridine treatment yielded an intact homogeneous core protein of approximately 210,000 daltons, with a blocked amino-terminus. Greater than 95% of chondroitin sulfate chains and 80% of N- and O-linked oligosaccharides were removed by the procedure, which made the product an excellent xylosyltransferase acceptor. Little alteration of core protein structure occurred during the HF-pyridine treatment as shown by complete immunoreactivity with antiserums prepared against hyaluronidase-digested proteoglycan. In other studies, the initially synthesized precursor for proteoglycan core protein was found to be approximately 376,000 daltons and localized to the rough membrane fractions. This precursor already contained N-linked oligosaccharides, and was also able to accept xylose, thereby initiating chondroitin sulfate chains. The precursor was translocated intact in an energy-dependent manner to smooth membrane-Golgi fractions where further processing of high mannose type of oligosaccharides and addition of glycosaminoglycan chains occurred. The subcellular distribution pattern of the chondroitin sulfate-synthesizing enzymes corroborated the proposed topological modifications of the proteoglycan core protein precursor.  相似文献   

14.
Proteoglycans consist of a protein core, with one or more glycosaminoglycan chains (i.e., chondroitin sulfate, dermatan sulfate and heparin sulfate) bound covalently to it. The glycosaminoglycan chains account for many of the functions and properties of proteoglycans. The development of proteoglycan glycotechnology to exploit the functionality of glycosaminoglycan chains is an extremely important aspect of glycobiology. Here we describe an efficient and widely applicable method for chemoenzymatic synthesis of conjugate compounds comprising intact long chondroitin sulfate (ChS) chains. An alkyne containing ChS was prepared by an enzymatic transfer reaction and linked with a chemically synthesized core compound containing an azido group using click chemistry. This method enabled highly efficient introduction of ChS into target materials. Furthermore, the ChS-introduced compounds had marked stability against proteolysis, and the chemically linked ChS chain contributed to the stability of these core compounds. We believe the present method will contribute to the development of proteoglycan glycobiology and technology.  相似文献   

15.
The addition of retinoic acid to adult bovine articular cartilage cultures produces a concentration-dependent decrease in both proteoglycan synthesis and the proteoglycan content of the tissue. Total protein synthesis was not affected by the presence of retinoic acid, indicating that the inhibition of proteoglycan synthesis was not due to cytotoxicity. The proteoglycans synthesized in the presence of retinoic acid were similar in hydrodynamic size, ability to form aggregates with hyaluronate, and glycosaminoglycan composition to those of control cultures. However, the presence of larger glycosaminoglycan chains suggests that the core protein was substituted with fewer but longer glycosaminoglycan chains. In cultures maintained with retinoic acid, a decreased ratio of the large proteoglycan was synthesized relative to the small proteoglycan compared to that measured in control cultures. In cultures maintained with retinoic acid for 1 day and then switched to medium with 20% (v/v) fetal calf serum, the rate of proteoglycan synthesis and hexuronate contents increased within 5 days to levels near those of control cultures. Within 2 days of switching to medium with 20% (v/v) fetal calf serum, the relative proportions of the proteoglycan species were similar to those produced in cultures maintained in medium with 20% (v/v) fetal calf serum throughout. The rate of proteoglycan synthesis by bovine articular cartilage cultures exhibited an exponential decay following exposure to retinoic acid, with estimated half-lives of 11.5 and 5.3 h for tissue previously maintained in medium alone or containing 20% (v/v) fetal calf serum, respectively. The addition of 1 mM benzyl beta-D-xyloside only partially reversed the retinoic acid-mediated inhibition of proteoglycan synthesis. This indicates that the inhibition of proteoglycan synthesis by retinoic acid was due to both a decreased availability of xylosylated core protein and a decreased capacity of the chondrocytes to synthesize chondroitin sulfate chains.  相似文献   

16.
Activation of endothelial cells by cytokines and endotoxin causes procoagulant and pro-inflammatory changes over a period of hours. We postulated that the same functional state might be achieved more rapidly by changes in the metabolism of heparan sulfate, which supports many of the normal functions of endothelial cells. We previously found that binding of anti-endothelial cell antibodies and activation of complement on endothelial cells causes the rapid shedding of endothelial cell heparan sulfate. Here we report the biochemical mechanism responsible for the release of the heparan sulfate. Stimulation of endothelial cells by anti-endothelial cell antibodies and complement resulted in the release of 35S-heparan sulfate proteoglycan and partially degraded 35S-heparan sulfate chains. Degradation of the 35S-heparan sulfate chains was not necessary for release since heparin and suramin prevented cleavage of the heparan sulfate but did not inhibit release from stimulated endothelial cells. The 35S-heparan sulfate proteoglycan released from endothelial cells originated from the cell surface and had a core protein similar in size (70.5 kD) to syndecan-1. Release was due to proteolytic cleavage of the protein core by serine and/or cysteine proteinases since the release of heparan sulfate was inhibited 87% by antipain and 53% by leupeptin. Release of heparan sulfate coincided with a decrease of ∼︁7 kD in the mass of the protein core and with a loss of hydrophobicity of the proteoglycan, consistent with the loss of the hydrophobic transmembrane domain. The cleavage and release of cell-surface 35S-heparan sulfate proteoglycan might be a novel mechanism by which endothelial cells may rapidly acquire the functional properties of activated endothelial cells. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The expression and core protein structure of two proteoglycans, the major cartilage proteoglycan isolated from a rat chondrosarcoma and a small molecular weight chondroitin sulfate proteoglycan isolated from a rat yolk sac tumor, have been compared. The cartilage proteoglycan was not detectable in the cartilage tissue of cartilage matrix deficient (cmdcmd) neonatal mice by immunofluorescence, but the cmd cartilage did react with antibodies against the core protein of the yolk sac tumor proteoglycan. Radioimmunoassays showed that the core proteins of these proteoglycans are not cross-reactive with each other. Analysis of the core proteins by sodium dodecyl sulfate/polyacrylamide gel electrophoresis after chondroitinase ABC treatment of the proteoglycan revealed a large difference in their sizes. The cartilage proteoglycan core protein had a molecular weight of about 200,000 while the yolk sac tumor proteoglycan core protein migrated with an apparent molecular weight of about 20,000. In addition, the cultured yolk sac tumor cells that make the small proteoglycan did not react with antiserum against the cartilage proteoglycan. These results indicate that the proteoglycan isolated from the yolk sac tumor is similar to the small chondroitin sulfate proteoglycan species found in cartilage and support the existence of at least two dissimilar and genetically independent chondroitin sulfate proteoglycan core proteins.  相似文献   

18.
Proteoglycans play a role in regulating proliferation and adhesion of cells to each other and to the basal lamina. Synthesis of proteoglycans is disrupted by β-xylosides, which serve as alternate substrate sites for glycosaminoglycan chain attachment and therefore prevent glycosylation of the core protein. We have investigated the effects of p-nitrophenyl-β-D-xylopyranoside (PNP-xyloside) on cultured human keratinocytes. Stratified cultures were incubated for 7 days with PNP-xyloside (0.05–2.0 mM). Concentrations as low as 0.05 mM increased the secretion of free chondroitin sulfate by 10–15-fold over untreated cultures. Cellassociated proteoglycan decreased as PNP-xyloside concentration increased. At 2 mM PNP-xyloside, heparan sulfate as well as chondroitin sulfate addition to core proteins was disrupted: the core protein of epican, a heparan sulfate form of CD44 found on keratinocytes, was detected immunologically but lacked heparan sulfate. 2.0 mM PNP-xyloside reduced the number of attached cells by 20–25% after 7 days, but had little effect on morphology or protein synthesis. These results indicate that intact proteoglycans are not critical for maintaining epidermal keratinocyte stratification, cell-cell adhesion, or growth. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg2+ or Mn2+, but not Ca2+, induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg2+ found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor.  相似文献   

20.
Extraction of stage 22-23 chick embryo limb buds that had been metabolically labeled with [35S]sulfate yielded heparan sulfate proteoglycan, small chondroitin sulfate proteoglycan, and large chondroitin sulfate proteoglycan (designated PG-M). PG-M constituted over 60% of the total macromolecular [35S]sulfates. It was larger in hydrodynamic size, richer in protein, and contained fewer chondroitin sulfate chains as compared to the predominant proteoglycan (PG-H, Mr congruent to 1.5 X 10(6)) of chick embryo cartilage. The chondroitin sulfate chains were notable for their large size (Mr greater than or equal to 60,000) and high content of nonsulfated chondroitin units (about 20% of the total hexosamine). Hexosamine-containing chains corresponding in size to N-linked and O-linked oligosaccharides were also present. The core protein was rich in serine, glutamic acid (glutamine), and glycine which together comprised about 38% of the total amino acids. Following chondroitinase AC II (or ABC) digestion, core molecules were obtained which migrated on sodium dodecyl sulfate gel electrophoresis as a doublet of bands with approximately Mr = 550,000 (major) and 500,000, respectively. The Mr = 550,000 core glycoprotein was structurally different from the core glycoprotein (Mr congruent to 400,000) of PG-H, as ascertained by tryptic peptide mapping and immunochemical criteria. Immunofluorescent localization of PG-M showed that the intensity of PG-M staining progressively became higher in the core mesenchyme region than in the peripheral loose mesenchyme, closely following the condensation of mesenchymal cells. Since the cell condensation process has been shown to begin with the increase of fibronectin and type I collagen concentration, the similar change in PG-M distribution suggests that PG-M plays an important role in the cell condensation process by means of its interaction with fibronectin and type I collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号