首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence microphotolysis was combined with confocal laser-scanning microscopy to yield a method, herein referred to as line-scanning microphotolysis (LINESCAMP), for the measurement of molecular transport at a lateral resolution of approximately 0.34 microns and a temporal resolution of approximately 0.5 ms. A confocal microscope was operated in the line scan mode, while the laser beam power could be switched during scanning between low monitoring and high photolysing levels in less then a microsecond. The number and location of line segments to be photolysed could be freely determined. The length of the photolysed segments could be also chosen and was only limited by diffraction. Together with instrumentation a new, completely general, theoretical framework for the evaluation of diffusion measurements was developed. Based on the numerical simulation of diffusion processes employing a modified Crank-Nicholson scheme, the theory could be applied to any photobleaching geometry and profile as the initial condition and took into account the convolution with the microscope point spread function. With small diffraction-limited areas, the method yielded accurate values for diffusion coefficients in the range between approximately 10(-4) and 1 micron2 s-1. A first application of the method to the diffusion of a fluorescently labeled tracer inside the cell nucleus showed the potential of the method for the study of complex biological systems.  相似文献   

2.
Fluorescence photobleaching methods have been widely used to study diffusion processes in the plasma membrane of single living cells and other membrane systems. Here we describe the application of a new photobleaching technique, scanning microphotolysis. Employing a recently developed extension module to a commercial confocal microscope, an intensive laser beam was switched on and off during scanning according to a user definable image mask. Thereby the location, geometry, and number of photolysed spots could be chosen arbitrarily, their size ranging from tens of micrometers down to the diffraction limit. Therewith we bleached circular areas on the surface of single living 3T3 cells labeled with the fluorescent lipid analog NBD-HPC. Subsequently, the fluorescence recovery process was observed using the attenuated laser beam for excitation. This yielded image stacks representing snapshots of the spatial distribution of fluorescent molecules. From these we computed the radial distribution functions of the photobleached dye molecules. The variance of these distributions is linearly related to the diffusion constant, time, and the mobile fraction of the diffusing species. Furthermore, we compared directly the theoretically expected and measured distribution functions, and could thus determine the diffusion coefficient from each single image. The results of these two new evaluation methods (D = 0.3 +/- 0.1 micron 2/s) agreed well with the outcome of conventional fluorescence recovery measurements. We show that by scanning microphotolysis information on dynamical processes such as diffusion of lipids or proteins can be acquired at the superior spatial resolution of a confocal laser scanning microscope.  相似文献   

3.
Single-cell flux measurement by continuous fluorescence microphotolysis   总被引:1,自引:0,他引:1  
Continuous fluorescence microphotolysis (CFM) was adapted to flux measurements in single cells. The principle of the method is simple: Cells are equilibrated with a fluorescent solute, an individual cell is continuously irradiated by a laser beam focussed down to approximately the diameter of the cell, and fluorescence originating from the irradiated cell is monitored. In this procedure irradiation irreversibly photolyzes chromophores in the cell while fresh chromophores enter the cell by membrane transport (flux). The resulting fluorescence decay can be analyzed for the rate constants of both membrane transport and photolysis. As an experimental test of the new method the band-3 mediated transport of the fluorescent anion N-(7-nitrobenzofuranzan-4-yl)-taurine (NBD-taurine) across the erythrocyte membrane was measured. For various experimental conditions good agreement between values obtained by CFM and by fluorescence microphotolysis (FM) was observed. By measurements on single ghosts it was furthermore found that photolysis of NBD-taurine is first-order with respect to the power of irradiation. On this basis a stepped-intensity procedure was worked out that facilitates data evaluation in flux measurements. Also, by analysing the relations between CFM and FM flux measurements a method was devised by which FM data can be corrected for (inevitable) photolysis.  相似文献   

4.
We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record lines-cans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.  相似文献   

5.
V. C. Wright 《CMAJ》1982,126(9):1035
In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed.  相似文献   

6.
Summary— Confocal scanning optical microscopy has significant advantages over conventional fluorescence microscopy: it rejects the out-of-locus light and provides a greater resolution than the wide-field microscope. In laser scanning optical microscopy, the specimen is scanned by a diffraction-limited spot of laser light and the fluorescence emission (or the reflected light) is focused onto a photodetector. The imaged point is then digitized, stored into the memory of a computer and displayed at the appropriate spatial position on a graphic device as a part of a two-dimensional image. Thus, confocal scanning optical microscopy allows accurate non-invasive optical sectioning and further three-dimensional reconstruction of biological specimens. Here we review the recent technological aspects of the principles and uses of the confocal microscope, and we introduce the different methods of three-dimensional imaging.  相似文献   

7.
Raster image correlation spectroscopy (RICS) is a noninvasive technique to detect and quantify events in a live cell, including concentration of molecules and diffusion coefficients of molecules; in addition, by measuring changes in diffusion coefficients, RICS can indirectly detect binding. Any specimen containing fluorophores that can be imaged with a laser scanning microscope can be analyzed using RICS. There are other techniques to measure diffusion coefficients and binding; however, RICS fills a unique niche. It provides spatial information and can be performed in live cells using a conventional confocal microscope. It can measure a range of diffusion coefficients that is not accessible with any other single optical correlation-based technique. In this article we describe a protocol to obtain raster scanned images with an Olympus FluoView FV1000 confocal laser scanning microscope using Olympus FluoView software to acquire data and SimFCS software to perform RICS analysis. Each RICS measurement takes several minutes. The entire procedure can be completed in ~2 h. This procedure includes focal volume calibration using a solution of fluorophores with a known diffusion coefficient and measurement of the diffusion coefficients of cytosolic enhanced green fluorescent protein (EGFP) and EGFP-paxillin.  相似文献   

8.
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented.  相似文献   

9.
The laser scanning confocal microscope has enormous potential in many fields of biology. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by the user's laboratory. To achieve better performance from the equipment, it is necessary to run a series of tests to ensure that the optical machine is functioning properly. We have devised these methods on the Leica TCS-SP and TCS-4D systems. Tests measuring field illumination, lens clarity, laser power output, dichroic functioning, spectral alignment, axial resolution, laser power stability, machine performance, and system noise were derived to test the Leica laser scanning confocal microscopy system. These tests should be applicable to other manufacturers' systems as well. The relationship between photomultiplier tube (PMT) voltage, laser power, and averaging using a 10-microm-diameter test bead has shown that the noise (coefficient of variation of bead intensity, CV) in an image increases as the PMT increases. Therefore increasing the PMT setting results in increased noise. For ideal image quality, it appears that it is better to decrease the PMT setting and increase laser power, as noise generated by high PMT settings will reduce the image quality far more than the bleaching caused by higher laser power. Averaging can be used to improve the image at high PMT values, provided the sample is not bleached by repeated passes of the laser.  相似文献   

10.
Fluorescence imaging in the second near‐infrared optical window (NIR‐II, 900‐1700 nm) has become a technique of choice for noninvasive in vivo imaging in recent years. Greater penetration depths with high spatial resolution and low background can be achieved with this NIR‐II window, owing to low autofluorescence within this optical range and reduced scattering of long wavelength photons. Here, we present a novel design of confocal laser scanning microscope tailored for imaging in the NIR‐II window. We showcase the outstanding penetration depth of our confocal setup with a series of imaging experiments. HeLa cells labeled with PbS quantum dots with a peak emission wavelength of 1276 nm can be visualized through a 3.5‐mm‐thick layer of scattering medium, which is a 0.8% Lipofundin solution. A commercially available organic dye IR‐1061 (emission peak at 1132 nm), in its native form, is used for the first time, as a NIR‐II fluorescence label in cellular imaging. Our confocal setup is capable of capturing optically sectioned images of IR‐1061 labeled chondrocytes in fixed animal cartilage at a depth up to 800 μm, with a superb spatial resolution of around 2 μm.   相似文献   

11.
BACKGROUND: All slide-based fluorescence cytometry detections systems basically include an excitation light source, intermediate optics, and a detection device (CCD or PMT). Occasionally, this equipment becomes unstable, generating unreliable and inferior data. METHODS: A number of tests have been devised to evaluate equipment performance and instability. The following four instability tests are described: galvanometer scanning, stage drift, correct wavelength spectral detection, and long-term laser power. RESULTS: Quality assurance tests revealed that a confocal microscope can become unstable in the following parameters, yielding inaccurate data: laser power, PMTs functionality, spectrophotometer accuracy, galvanometer scanning and laser stability, and stage drift. Long-term laser power stability has been observed to vary greatly. CONCLUSIONS: Confocal systems can become unstable in the following parameters: long-term laser power, galvanometer scanning, spectrophotometer accuracy, and stage stability. Instability in any of these parameters will affect image quality. Laser power fluctuations result from either a defective Acousto-optic tunable filter or improper heat dissipation. Spectrophotometer instability will generate unreliable spectra data, extra light reflections, and poor image quality. Galvanometer scanning instability yields poor image quality while microscope stage drift results in a sample going out of the plane of focus. With minor modifications, these tests may be applicable to other slide-based systems.  相似文献   

12.
We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or "blinking". Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of alpha5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection.  相似文献   

13.
Principles and practices of laser scanning confocal microscopy   总被引:9,自引:0,他引:9  
The laser scanning confocal microscope (LSCM) is an essential tool for many biomedical imaging applications at the level of the light microscope. The basic principles of confocal microscopy and the evolution of the LSCM into today's sophisticated instruments are outlined. The major imaging modes of the LSCM are introduced including single optical sections, multiple wavelength images, three-dimensional reconstructions, and living cell and tissue sequences. Practical aspects of specimen preparation, image collection, and image presentation are included along with a primer on troubleshooting the LSCM for the novice.  相似文献   

14.
We describe a compact form of confocal scanning microscope using a semiconductor laser. Confocal operation is ensured by the use of a single mode optical fibre for both launching the light into the microscope and collecting the signal from the object. The collected light is allowed to re-enter the laser and the image is detected as a modulation on the signal from the laser power monitor diode. Images are compared with those obtained from traditional point detectors. The alignment tolerances of the reciprocal scheme are found to be greatly reduced over conventional confocal systems.  相似文献   

15.
不同微生物的单光束激光陷阱操纵   总被引:1,自引:0,他引:1  
本文报导了分别采用He-Ne和Ar^+激光器与光不显微镜构成的单光束激光陷阱操纵酵母菌、青霉等不同微生物的实验观察结果,讨论了操纵条件。研究表明:用单光束高会聚激光产生的梯度力操纵微生物体,其有效作用力的大小不仅与激光功率、波长、束腰半径和光束会聚角有关,还与微生物的大小、吸收系数、菌龄及培养方法等因素有关。  相似文献   

16.
We develop an extension of fluorescence correlation spectroscopy (FCS) using a spinning disk confocal microscope. This approach can spatially map diffusion coefficients or flow velocities at up to approximately 10(5) independent locations simultaneously. Commercially available cameras with frame rates of 1000 Hz allow FCS measurements of systems with diffusion coefficients D~10(-7) cm(2)/s or smaller. This speed is adequate to measure small microspheres (200-nm diameter) diffusing in water, or hindered diffusion of macromolecules in complex media (e.g., tumors, cell nuclei, or the extracellular matrix). There have been a number of recent extensions to FCS based on laser scanning microscopy. Spinning disk confocal microscopy, however, has the potential for significantly higher speed at high spatial resolution. We show how to account for a pixel size effect encountered with spinning disk confocal FCS that is not present in standard or scanning FCS, and we introduce a new method to correct for photobleaching. Finally, we apply spinning disk confocal FCS to microspheres diffusing in Type I collagen, which show complex spatially varying diffusion caused by hydrodynamic and steric interactions with the collagen matrix.  相似文献   

17.
Construction of a confocal microscope for real-time x-y and x-z imaging   总被引:1,自引:0,他引:1  
We describe the construction of a simple 'real-time' laser-scanning confocal microscope, and illustrate its use for rapid imaging of elementary intracellular calcium signaling events. A resonant scanning galvanometer (8 kHz) allows x-y frame acquisition rates of 15 or 30 Hz, and the use of mirrors to scan the laser beam permits use of true, pin-hole confocal detection to provide diffraction-limited spatial resolution. Furthermore, use of a piezoelectric device to rapidly focus the objective lens allows axial (x-z) images to be obtained from thick specimens at similar frame rates. A computer with image acquisition and graphics cards converts the output from the microscope to a standard video signal, which can then be recorded on videotape and analyzed by regular image processing systems. The system is largely made from commercially available components and requires little custom construction of mechanical parts or electronic circuitry. It costs only a small fraction of that of comparable commercial instruments, yet offers greater versatility and similar or better performance.  相似文献   

18.
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.  相似文献   

19.
激光共聚焦显微镜与光学显微镜之比较   总被引:11,自引:1,他引:10  
激光扫描共聚焦显微镜在活细胞的动态检测、光学切片和三维结构重建等方面较光学显微镜有质的飞跃。本文对激光扫描共聚焦显微镜和光学显微镜进行了比较和讨论,并简单介绍多光子激光扫描显微镜。  相似文献   

20.
Fluorescence microphotolysis ("photobleaching") has been widely used to measure translational diffusion coefficients of lipids and proteins in cell membranes. This communication shows that fluorescence microphotolysis can be also employed for measurement of membrane transport in single cells and organelles. The influx of fluorescently labeled dextrans of graded molecular size into leaky human erythrocyte ghosts and isolated rat liver cell nuclei has been measured. For the nuclear envelope, a functional pore radius of 56-59 A is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号