首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the pulmonary vascular effects of prophylactic use of sildenafil, a specific phosphodiesterase-5 inhibitor, in late-gestation fetal lambs with chronic pulmonary hypertension. Fetal lambs were operated on at 129 +/- 1 days gestation (term = 147 days). Ductus arteriosus (DA) was compressed for 8 days to cause chronic pulmonary hypertension. Fetuses were treated with sildenafil (24 mg/day) or saline. Pulmonary vascular responses to increase in shear stress and in fetal PaO2 were studied at, respectively, day 4 and 6. Percent wall thickness of small pulmonary arteries (%WT) and the right ventricle-to-left ventricle plus septum ratio (RVH) were measured after completion of the study. In the control group, DA compression increased PA pressure (48 +/- 5 to 72 +/- 8 mmHg, P < 0.01) and pulmonary vascular resistance (PVR) (0.62 +/- 0.08 to 1.15 +/- 0.11 mmHg x ml(-1) x min(-1), P < 0.05). Similar increase in PAP was observed in the sildenafil group, but PVR did not change significantly (0.54 +/- 0.06 to 0.64 +/- 0.09 mmHg x ml(-1) x min(-1)). Acute DA compression, after brief decompression, elevated PVR 25% in controls and decreased PVR 35% in the sildenafil group. Increased fetal PaO2 did not change PVR in controls but decreased PVR 60% in the sildenafil group. %WT and RVH were not different between groups. Prophylactic sildenafil treatment prevents the rise in pulmonary vascular tone and altered vasoreactivity caused by DA compression in fetal lambs. These results support the hypothesis that elevated PDE5 activity is involved in the consequences of chronic pulmonary hypertension in the perinatal lung.  相似文献   

2.
Mechanisms that maintain high pulmonary vascular resistance (PVR) and oppose vasodilation in the fetal lung are poorly understood. In fetal lambs, increased pulmonary artery pressure evokes a potent vasoconstriction, suggesting that a myogenic response contributes to high PVR in the fetus. In adult systemic circulations, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been shown to modulate the myogenic response, but its role in the fetal lung is unknown. We hypothesized that acute increases in pulmonary artery pressure release 20-HETE, which causes vasoconstriction, or a myogenic response, in the fetal lung. To address this hypothesis, we studied the hemodynamic effects of N-methylsufonyl-12,12-dibromododec-11-enamide (DDMS), a specific inhibitor of 20-HETE production, on the pulmonary vasoconstriction caused by acute compression of the ductus arteriosus (DA) in chronically prepared fetal sheep. An inflatable vascular occluder around the DA was used to increase pulmonary artery pressure under three study conditions: control, after pretreatment with nitro-L-arginine (L-NA; to inhibit shear-stress vasodilation), and after combined treatment with both L-NA and a specific 20-HETE inhibitor, DDMS. We found that DA compression after L-NA treatment increased PVR by 44 +/- 12%. Although intrapulmonary DDMS infusion did not affect basal PVR, DDMS completely abolished the vasoconstrictor response to DA compression in the presence of L-NA (44 +/- 12% vs. 2 +/- 4% change in PVR, L-NA vs. L-NA + DDMS, P < 0.05). We conclude that 20-HETE mediates the myogenic response in the fetal pulmonary circulation and speculate that pharmacological inhibition of 20-HETE might have a therapeutic role in neonatal conditions characterized by pulmonary hypertension.  相似文献   

3.
Nitric oxide (NO) is produced by NO synthase (NOS) and contributes to the regulation of vascular tone in the perinatal lung. Although the neuronal or type I NOS (NOS I) isoform has been identified in the fetal lung, it is not known whether NO produced by the NOS I isoform plays a role in fetal pulmonary vasoregulation. To study the potential contribution of NOS I in the regulation of basal fetal pulmonary vascular resistance (PVR), we studied the hemodynamic effects of a selective NOS I antagonist, 7-nitroindazole (7-NINA), and a nonselective NOS antagonist, N-nitro-L-arginine (L-NNA), in chronically prepared fetal lambs (mean age 128 +/- 3 days, term 147 days). Brief intrapulmonary infusions of 7-NINA (1 mg) increased basal PVR by 37% (P < 0.05). The maximum increase in PVR occurred within 20 min after infusion, and PVR remained elevated for up to 60 min. Treatment with 7-NINA also increased the pressure gradient between the pulmonary artery and aorta, suggesting constriction of the ductus arteriosus (DA). To test whether 7-NINA treatment selectively inhibits the NOS I isoform, we studied the effects of 7-NINA and L-NNA on acetylcholine-induced pulmonary vasodilation. The vasodilator response to acetylcholine remained intact after treatment with 7-NINA but was completely inhibited after L-NNA, suggesting minimal effects on endothelial or type III NOS after 7-NINA infusion. Western blot analysis detected NOS I protein in the fetal lung and great vessels including the DA. NOS I protein was detected in intact and endothelium-denuded vessels, suggesting that NOS I is present in the medial or adventitial layer. We conclude that 7-NINA, a selective NOS I antagonist, increases basal PVR, systemic arterial pressure, and DA tone in the late-gestation fetus and that NOS I protein is present in the fetal lung and great vessels. We speculate that NOS I may contribute to NO production in the regulation of basal vascular tone in the pulmonary and systemic circulations and the DA.  相似文献   

4.
Partial ligation of the ductus arteriosus (DA) in the fetal lamb causes sustained elevation of pulmonary vascular resistance (PVR) and hypertensive structural changes in small pulmonary arteries, providing an animal model for persistent pulmonary hypertension of the newborn. Based on its vasodilator and antimitogenic properties in other experimental studies, we hypothesized that estradiol (E(2)) would attenuate the pulmonary vascular structural and hemodynamic changes caused by pulmonary hypertension in utero. To test our hypothesis, we treated chronically instrumented fetal lambs (128 days, term = 147 days) with daily infusions of E(2) (10 microg; E(2) group, n = 6) or saline (control group, n = 5) after partial ligation of the DA. We measured intrauterine pulmonary and systemic artery pressures in both groups throughout the study period. After 8 days, we delivered the study animals by cesarean section to measure their hemodynamic responses to birth-related stimuli. Although pulmonary and systemic arterial pressures were not different in utero, fetal PVR immediately before ventilation was reduced in the E(2)-treated group (2.43 +/- 0.79 vs. 1.48 +/- 0.26 mmHg. ml(-1). min, control vs. E(2), P < 0.05). During the subsequent delivery study, PVR was lower in the E(2)-treated group in response to ventilation with hypoxic gas but was not different between groups with ventilation with 100% O(2). During mechanical ventilation after delivery, arterial partial O(2) pressure was higher in E(2) animals than controls (41 +/- 11 vs. 80 +/- 35 Torr, control vs. E(2), P < 0. 05). Morphometric studies of hypertensive vascular changes revealed that E(2) treatment decreased wall thickness of small pulmonary arteries (59 +/- 1 vs. 48 +/- 1%, control vs. E(2), P < 0.01). We conclude that chronic E(2) treatment in utero attenuates the pulmonary hemodynamic and histological changes caused by DA ligation in fetal lambs.  相似文献   

5.
Mechanisms that maintain high pulmonary vascular resistance (PVR) in the fetal lung are poorly understood. Activation of the Rho kinase signal transduction pathway, which promotes actin-myosin interaction in vascular smooth muscle cells, is increased in the pulmonary circulation of adult animals with experimental pulmonary hypertension. However, the role of Rho kinase has not been studied in the fetal lung. We hypothesized that activation of Rho kinase contributes to elevated PVR in the fetus. To address this hypothesis, we studied the pulmonary hemodynamic effects of brief (10 min) intrapulmonary infusions of two specific Rho kinase inhibitors, Y-27632 (15-500 microg) and HA-1077 (500 microg), in chronically prepared late-gestation fetal lambs (n = 9). Y-27632 caused potent, dose-dependent pulmonary vasodilation, lowering PVR from 0.67 +/- 0.18 to 0.16 +/- 0.02 mmHg x ml(-1) x min(-1) (P < 0.01) at the highest dose tested without lowering systemic arterial pressure. Despite brief infusions, Y-27632-induced pulmonary vasodilation was sustained for 50 min. HA-1077 caused a similar fall in PVR, from 0.39 +/- 0.03 to 0.19 +/- 0.03 (P < 0.05). To study nitric oxide (NO)-Rho kinase interactions in the fetal lung, we tested the effect of Rho kinase inhibition on pulmonary vasoconstriction caused by inhibition of endogenous NO production with nitro-L-arginine (L-NA; 15-30 mg), a selective NO synthase antagonist. L-NA increased PVR by 127 +/- 73% above baseline under control conditions, but this vasoconstrictor response was completely prevented by treatment with Y-27632 (P < 0.05). We conclude that the Rho kinase signal transduction pathway maintains high PVR in the normal fetal lung and that activation of the Rho kinase pathway mediates pulmonary vasoconstriction after NO synthase inhibition. We speculate that Rho kinase plays an essential role in the normal fetal pulmonary circulation and that Rho kinase inhibitors may provide novel therapy for neonatal pulmonary hypertension.  相似文献   

6.
In mature lungs, elevated positive end-expiratory pressure (PEEP) reduces pulmonary blood flow (PBF) and increases pulmonary vascular resistance (PVR). However, the effect of PEEP on PBF in preterm infants with immature lungs and a patent ductus arteriosus is unknown. Fetal sheep were catheterized at 124 days of gestation (term approximately 147 days), and a flow probe was placed around the left pulmonary artery to measure PBF. At 127 days, lambs were delivered and ventilated from birth with a tidal volume of 5 ml/kg and 4-cmH(2)O PEEP; PEEP was changed to 0, 8, and 12 cmH(2)O in random order, returning to 4 cmH(2)O between each change. Increasing PEEP from 4 to 8 cmH(2)O and from 4 to 12 cmH(2)O decreased PBF by 20.5 and 41.0%, respectively, and caused corresponding changes in PVR; reducing PEEP from 4 to 0 cmH(2)O did not affect PBF. Despite decreasing PBF, increasing PEEP from 4 to 8 cmH(2)O and 12 cmH(2)O improved oxygenation of lambs. Increasing and decreasing PEEP from 4 cmH(2)O significantly changed the contour of the PBF waveform; at a PEEP of 12 cmH(2)O, end-diastolic flow was reduced by 82.8% and retrograde flow was reestablished. Although increasing PEEP improves oxygenation, it adversely affects PBF and PVR shortly after birth, alters the PBF waveform, and reestablishes retrograde flow during diastole.  相似文献   

7.
Prolonged infusions of 17beta-estradiol reduce fetal pulmonary vascular resistance (PVR), but the effects of endogenous estrogens in the fetal pulmonary circulation are unknown. To test the hypothesis that endogenous estrogen promotes pulmonary vasodilation at birth, we studied the hemodynamic effects of prolonged estrogen-receptor blockade during late gestation and at birth in fetal lambs. We treated chronically prepared fetal lambs with ICI-182,780 (ICI, a specific estrogen-receptor blocker, n = 5) or 1% DMSO (CTRL, n = 5) for 7 days and then measured pulmonary hemodynamic responses to ventilation with low- and high-fraction inspired oxygen (FI(O(2))). Treatment with ICI did not change basal fetal PVR or arterial blood gas tensions. However, treatment with ICI abolished the vasodilator response to ventilation with low FI(O(2)) [change in PVR -30 +/- 6% (CTRL) vs. +10 +/- 13%, (ICI), P < 0.05] without reducing the vasodilator response to ventilation with high FI(O(2)) [change in PVR, -73 +/- 3% (CTRL) vs. -77 +/- 4%, (ICI); P = not significant]. ICI treatment reduced prostacyclin synthase (PGIS) expression by 33% (P < 0.05) without altering expression of endothelial nitric oxide synthase or cyclooxygenase-1 and -2. In situ hybridization and immunohistochemistry revealed that PGIS is predominantly expressed in the airway epithelium of late gestation fetal lambs. We conclude that prolonged estrogen-receptor blockade inhibits the pulmonary vasodilator response at birth and that this effect may be mediated by downregulation of PGIS. We speculate that estrogen exposure during late gestation prepares the pulmonary circulation for postnatal adaptation.  相似文献   

8.
Several congenital heart defects require surgery that acutely increases pulmonary blood flow (PBF). This can lead to dynamic alterations in postoperative pulmonary vascular resistance (PVR) and can contribute to morbidity and mortality. Thus the objective of this study was to determine the role of nitric oxide (NO), endothelin (ET)-1, and their interactions in the alterations of PVR after surgically induced increases in PBF. Twenty lambs underwent placement of an aortopulmonary vascular graft. Lambs were instrumented to measure vascular pressures and PBF and studied for 4 h. Before and after shunt opening, lambs received an infusion of saline (n = 9), tezosentan, an ETA- and ETB -receptor antagonist (n = 6), or Nomega-nitro-L-arginine (L-NNA), a NO synthase (NOS) inhibitor (n = 5). In control lambs, shunt opening increased PBF by 117.8% and decreased PVR by 40.7% (P < 0.05) by 15 min, without further changes thereafter. Plasma ET-1 levels increased 17.6% (P < 0.05), and total NOS activity decreased 61.1% (P < 0.05) at 4 h. ET-receptor blockade (tezosentan) prevented the plateau of PBF and PVR, such that PBF was increased and PVR was decreased compared with controls at 3 and 4 h (P < 0.05). These changes were associated with an increase in total NOS activity (+61.4%; P < 0.05) at 4 h. NOS inhibition (L-NNA) after shunt placement prevented the sustained decrease in PVR seen in control lambs. In these lambs, PVR decreased by 15 min (P < 0.05) but returned to baseline by 2 h. Together, these data suggest that surgically induced increases in PBF are limited by vasoconstriction, at least in part by an ET-receptor-mediated decrease in lung NOS activity. Thus NO appears to be important in maintaining a reduction in PVR after acutely increased PBF.  相似文献   

9.
ECG-triggered computed tomography (CT) was used during passage of iodinated contrast to determine regional pulmonary blood flow (PBF) in anesthetized prone/supine dogs. PBF was evaluated as a function of height within the lung (supine and prone) as a function of various normalization methods: raw unit volume data (PBFraw) or PBF normalized to regional fraction air (PBFair), fractional non-air (PBFgm), or relative number of alveoli (PBFalv). The coefficient of variation of PBFraw, PBFair, PBFalv, and PBFgm ranged between 30 and 50% in both lungs and both body postures. The position of maximal flow along the height of the lung (MFP) was calculated for PBFraw, PBFair, PBFalv, and PBFgm. Only PBFgm showed a significantly different MFP height supine vs. prone (whole lung: 2.60 +/- 1.08 cm supine vs. 5.08 +/- 1.61 cm prone, P < 0.01). Mean slopes (ml/min/gm water content/cm) of PBFgm were steeper supine vs. prone in the right (RL) but not left lung (LL) (RL: -0.65 +/- 0.29 supine vs. -0.26 +/- 0.25 prone, P < 0.02; LL: -0.47 +/- 0.21 supine vs. -0.32 +/- 0.26 prone, P > 0.10). Mean slopes of PBFgm vs. vertical lung height were not different prone vs. supine above this vertical height of MFP (VMFP), but PBFgm slopes were steeper in the supine position below the VMFP in the RL. We conclude that PBFgm distribution was posture dependent in RL but not LL. Support of the heart may play a role. We demonstrate that normalization factors can lead to differing attributions of gravitational effects on PBF heterogeneity.  相似文献   

10.
Acute partial compression of the fetal ductus arteriosus (DA) results in an initial increase in pulmonary blood flow (PBF) that is followed by acute vasoconstriction. The objective of the present study was to determine the role of nitric oxide (NO)-endothelin-1 (ET-1) interactions in the acute changes in pulmonary vascular tone after in utero partial constriction of the DA. Twelve late-gestation fetal lambs (132-140 days) were instrumented to measure vascular pressures and left PBF. After a 24-h recovery period, acute constriction of the DA was performed by partially inflating a vascular occluder, and the hemodynamic variables were observed for 4 h. In control lambs (n = 7), acute ductal constriction initially increased PBF by 627% (P < 0.05). However, this was followed by active vasoconstriction, such that PBF was restored to preconstriction values by 4 h. This was associated with a 43% decrease in total NO synthase (NOS) activity (P < 0.05) and a 106% increase in plasma ET-1 levels (P < 0.05). Western blot analysis demonstrated no changes in lung tissue endothelial NOS, preproET-1, endothelin-converting enzyme-1, or ET(B) receptor protein levels. The infusion of PD-156707 (an ET(A) receptor antagonist, n = 5) completely blocked the vasoconstriction and preserved NOS activity. These data suggest that the fetal pulmonary vasoconstriction after acute constriction of the DA is mediated by NO-ET-1 interactions. These include an increase in ET(A) receptor-mediated vasoconstriction and an ET(A) receptor-mediated decrease in NOS activity. The mechanisms of these NO-ET-1 interactions, and their role in mediating acute changes in PBF, warrant further studies.  相似文献   

11.
We tested whether severity of injury measured from the pulmonary transcapillary escape rate for transferrin (PTCER), lung water accumulation, and changes in regional pulmonary blood flow (PBF) would be similar after oleic acid (OA) injection into either all lung lobes or directly into the pulmonary artery feeding the left caudal lobe (LCL) only. Measurements were made with positron emission tomography. After 0.015 ml/kg OA was injected into the LCL (Lobar, n = 5), lung water increased in the left dorsal region from 37 +/- 5 to 50 +/- 8 ml/100 ml lung (P less than 0.05), PTCER was 533 +/- 59 10(-4)/min, and regional PBF decreased 62%. No significant change occurred in the uninjured right dorsal lung where PTCER was 85 +/- 32. In the left ventral region PTCER was 357 +/- 60, PBF decreased only 31%, and the increase in lung water was less (25 +/- 3 to 30 +/- 6). In contrast after 0.08 ml/kg OA was injected via the right atrium (Diffuse, n = 6), PTCER (283 +/- 94) was lower in the left dorsal region of this group than in the corresponding region of the Lobar group (P less than 0.05). The increase in lung water, however, was the same, but no change occurred in PBF distribution. These results indicate important differences between the two methods of causing lung injury with OA. After injury lung water accumulates primarily in dependent portions of lung and is not always accompanied by a decrease in regional PBF. These decreases, when they occur, may instead indicate severe vascular injury.  相似文献   

12.
Prenatal tracheal occlusion (TO) has been shown to accelerate fetal lung growth, yet the mechanism is poorly understood. The goal of this study was to determine the relationship between fetal intratracheal pressure (Pitr) and fetal lung growth after TO. Fetal lambs underwent placement of an intratracheal catheter and a reference catheter at 115--120 days gestation (term, 145 days). Fetal Pitr was continuously controlled at three levels (high, 8 mmHg; moderate, 4 mmHg; low, 1 mmHg) by a servo-regulated pump. The animals were killed after 4 days, and the parameters of lung growth were compared. Lung volume (136.0 +/- 16.7, 94.9 +/- 9.7, 55.5 +/- 12.4 ml/kg), lung-to-body weight ratio (6.31 +/- 0.70, 4.89 +/- 0.38, 3.39 +/- 0.22%), whole right lung dry weight (3.01 +/- 0.29, 2.53 +/- 0.15, 2.07 +/- 0.24 g/kg), right lung DNA (130.0 +/- 11.3, 116.7 +/- 8.6, 97.5 +/- 10.9 mg/kg), and protein contents (1,865.5 +/- 92.5, 1,657.6 +/- 106.8, 1,312.0 +/- 142.5 mg/kg) in high, moderate, and low groups, respectively, all increased in the moderate compared with the low group and increased further in the high compared with the moderate group. Morphometry confirmed a stepwise increase in the volume of respiratory region and alveolar surface area. We conclude that lung growth in the first 4 days after TO is closely correlated with fetal Pitr, offering additional evidence that an increase in lung expansion is one of the major factors responsible for TO-induced lung growth.  相似文献   

13.
Thromboxane (Tx) has been suggested to mediate the pulmonary hypertension of phorbol myristate acetate- (PMA) induced acute lung injury. To test this hypothesis, the relationship between Tx and pulmonary arterial pressure was evaluated in a model of acute lung injury induced with PMA in pentobarbital sodium-anesthetized male mongrel dogs. Sixty minutes after administration of PMA (20 micrograms/kg iv, n = 10), TxB2 increased 10-fold from control in both systemic and pulmonary arterial blood and 8-fold in bronchoalveolar lavage (BAL) fluid. Concomitantly, pulmonary arterial pressure (Ppa) increased from 14.5 +/- 1.0 to 36.2 +/- 3.5 mmHg, and pulmonary vascular resistance (PVR) increased from 5.1 +/- 0.4 to 25.9 +/- 2.9 mmHg.l-1.min. Inhibition of Tx synthase with OKY-046 (10 mg/kg iv, n = 6) prevented the PMA-induced increase in Tx concentrations in blood and BAL fluid but did not prevent or attenuate the increase in Ppa. OKY-046 pretreatment did, however, attenuate but not prevent the increase in PVR 60 min after PMA administration. Pretreatment with the TxA2/prostaglandin H2 receptor antagonist ONO-3708 (10 micrograms.kg-1.min-1 iv, n = 7) prevented the pressor response to bolus injections of 1-10 micrograms U-46619, a Tx receptor agonist, but did not prevent or attenuate the PMA-induced increase in Ppa. ONO-3708 also attenuated but did not prevent the increase in PVR. These results suggest that Tx does not mediate the PMA-induced pulmonary hypertension but may augment the increases in PVR in this model of acute lung injury.  相似文献   

14.
Leukotrienes C4 and D4 have been implicated as possible mediators of hypoxic pulmonary vasoconstriction. To test this hypothesis, the relationship between pulmonary leukotriene (LT) synthesis in response to hypoxia and alterations in pulmonary hemodynamics was evaluated in pentobarbital sodium-anesthetized, neuromuscular-blocked, male, mongrel dogs. A reduction in the fraction of inspired O2 (FIO2) in vehicle-treated animals (n = 12) from 0.21 to 0.10 was associated with increases in LTC4 and LTD4 in bronchoalveolar lavage fluid (BALF). After 30 min of continuous hypoxia, LTC4 and LTD4 increased from control values of 59.4 +/- 10.4 and 91.7 +/- 18.1 ng/lavage to 142.7 +/- 31.8 (P less than 0.05) and 156.3 +/- 25.3 (P less than 0.01) ng/lavage, respectively. Concomitantly, mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) were increased over control by 67 +/- 7 (P less than 0.001) and 62 +/- 7% (P less than 0.001), respectively. In contrast, in animals treated with diethylcarbamazine (n = 5), a leukotriene A4 synthase inhibitor, identical reductions in FIO2 were not associated with increases in LTC4 and LTD4 in BALF, although at the same time period, Ppa and PVR were increased over control by 60 +/- 13 (P less than 0.05) and 112 +/- 31% (P less than 0.05), respectively. These results, therefore, do not support the contention that leukotrienes mediate hypoxic pulmonary vasoconstriction in dogs.  相似文献   

15.
The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.  相似文献   

16.
In addition to high pulmonary vascular resistance (PVR) and low pulmonary blood flow, the fetal pulmonary circulation is characterized by mechanisms that oppose vasodilation. Past work suggests that high myogenic tone contributes to high PVR and may contribute to autoregulation of blood flow in the fetal lung. Rho-kinase (ROCK) can mediate the myogenic response in the adult systemic circulation, but whether high ROCK activity contributes to the myogenic response and modulates time-dependent vasodilation in the developing lung circulation are unknown. We studied the effects of fasudil, a ROCK inhibitor, on the hemodynamic response during acute compression of the ductus arteriosus (DA) in chronically prepared, late-gestation fetal sheep. Acute DA compression simultaneously induces two opposing responses: 1) blood flow-induced vasodilation through increased shear stress that is mediated by NO release and 2) stretch-induced vasoconstriction (i.e., the myogenic response). The myogenic response was assessed during acute DA compression after treatment with N(omega)-nitro-L-arginine, an inhibitor of nitric oxide synthase, to block flow-induced vasodilation and unmask the myogenic response. Intrapulmonary fasudil infusion (100 microg over 10 min) did not enhance flow-induced vasodilation during brief DA compression but reduced the myogenic response by 90% (P<0.05). During prolonged DA compression, fasudil prevented the time-dependent decline in left pulmonary artery blood flow at 2 h (183+/-29 vs. 110+/-11 ml/min with and without fasudil, respectively; P<0.001). We conclude that high ROCK activity opposes pulmonary vasodilation in utero and that the myogenic response maintains high PVR in the normal fetal lung through ROCK activation.  相似文献   

17.

Background

The onset of ventilation at birth decreases pulmonary vascular resistance (PVR) resulting in a large increase in pulmonary blood flow (PBF). As the large cross sectional area of the pulmonary vascular bed develops late in gestation, we have investigated whether the ventilation-induced increase in PBF is reduced in immature lungs.

Methods

Surgery was performed in fetal sheep at 105 d GA (n = 7; term ~147 d) to insert an endotracheal tube, which was connected to a neonatal ventilation circuit, and a transonic flow probe was placed around the left pulmonary artery. At 110 d GA, fetuses (n = 7) were ventilated in utero (IUV) for 12 hrs while continuous measurements of PBF were made, fetuses were allowed to develop in utero for a further 7 days following ventilation.

Results

PBF changes were highly variable between animals, increasing from 12.2 ± 6.6 mL/min to a maximum of 78.1 ± 23.1 mL/min in four fetuses after 10 minutes of ventilation. In the remaining three fetuses, little change in PBF was measured in response to IUV. The increases in PBF measured in responding fetuses were not sustained throughout the ventilation period and by 2 hrs of IUV had returned to pre-IUV control values.

Discussion and conclusion

Ventilation of very immature fetal sheep in utero increased PBF in 57% of fetuses but this increase was not sustained for more than 2 hrs, despite continuing ventilation. Immature lungs can increase PBF during ventilation, however, the present studies show these changes are transient and highly variable.  相似文献   

18.
Type I and type II alveolar epithelial cells (AECs) are derived from the same progenitor cell, but little is known about the factors that regulate their differentiation into separate phenotypes. An alteration in lung expansion alters the proportion type II AECs in the fetal lung, indicating that this may be a regulatory factor. Our aim was to quantify the changes in the proportion of type I and type II AECs caused by increased fetal lung expansion and to provide evidence for transdifferentiation of type II into type I cells. Lung tissue samples were collected from ovine fetuses exposed to increased lung expansion induced by 2, 4, or 10 days of tracheal obstruction (TO). The identities and proportions of AEC types were determined with electron microscopy. The proportion of type II cells was reduced from 28.5 +/- 2.2% in control fetuses to 9.4 +/- 2.3% at 2 days of TO and then to 1.9 +/- 0.8% at 10 days. The proportion of type I AECs was not altered at 2 days of TO (63.1 +/- 2.3%) compared with that of control cells (64.8 +/- 0.5%) but was markedly elevated (to 89.4 +/- 0.9%) at 10 days of TO. The proportion of an intermediate AEC type, which displayed characteristics of both type I and type II cells, increased from 5.7 +/- 1.3% in control fetuses to 23.8 +/- 5.1% by 2 days of TO and was similar to control values at 10 days of TO (7.7 +/- 0.9%). Our data show that increases in fetal lung expansion cause time-dependent changes in the proportion of AEC types, including a transient increase in an intermediate cell type. These data provide the first evidence to support the hypothesis that increases in fetal lung expansion induce differentiation of type II into type I AECs via an intermediate cell type.  相似文献   

19.
We investigated whether platelet-activating factor (PAF) mediates endotoxin-induced systemic and pulmonary vascular derangements by studying the effects of a selective PAF receptor antagonist, SRI 63-441, during endotoxemia in sheep. Endotoxin infusion (1.3 micrograms/kg over 0.5 h) caused a rapid, transient rise in pulmonary arterial pressure (Ppa) from 16 +/- 3 to 36 +/- 10 mmHg (P less than 0.001) and pulmonary vascular resistance (PVR) from 187 +/- 84 to 682 +/- 340 dyn.s.cm-5 (P less than 0.05) at 0.5 h, followed by a persistent elevation in Ppa to 22 +/- 3 mmHg and in PVR to 522 +/- 285 dyn.s.cm-5 at 5 h in anesthetized sheep. Arterial PO2 (PaO2) decreased from 341 +/- 79 to 198 +/- 97 (P less than 0.01) and 202 +/- 161 Torr at 0.5 and 5 h, respectively (inspired O2 fraction = 1.0). SRI 63-441, 20 mg.kg-1.h-1 infused for 5 h, blocked the early rise in Ppa and PVR and fall in PaO2, but had no effect on the late phase pulmonary hypertension or hypoxemia. Endotoxin caused a gradual decrease in mean aortic pressure, which was unaffected by SRI 63-441. Infusion of SRI 63-441 alone caused no hemodynamic alterations. In follow-up studies, endotoxin caused an increase in lung lymph flow (QL) from 3.8 +/- 1.1 to 14.1 +/- 8.0 (P less than 0.05) and 12.7 +/- 8.6 ml/h at 1 and 4 h, respectively. SRI 63-441 abolished the early and attenuated the late increase in QL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号