首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The outer membrane of the hepatitis B virus consists of host lipid and the hepatitis B virus major (p25, gp28), middle (gp33, gp36), and large (p39, gp42) envelope polypeptides. These polypeptides are encoded by a large open reading frame that contains three in-phase translation start codons and a shared termination signal. The influence of the large envelope polypeptide on the secretion of hepatitis B surface antigen (HBsAg) subviral particles in transgenic mice was examined. The major polypeptide is the dominant structural component of the HBsAg particles, which are readily secreted into the blood. A relative increase in production of the large envelope polypeptide compared with that of the major envelope polypeptide led to profound reduction of the HBsAg concentration in serum as a result of accumulation of both envelope polypeptides in a relatively insoluble compartment within the cell. We conclude that inhibition of HBsAg secretion is related to a hitherto unknown property of the pre-S-containing domain of the large envelope polypeptide.  相似文献   

3.
R Prange  R Nagel    R E Streeck 《Journal of virology》1992,66(10):5832-5841
The small envelope S protein of hepatitis B virus carrying the surface antigen has the unique property of mobilizing cellular lipids into empty envelope particles which are secreted from mammalian cells. We studied the biogenesis of such particles using site-directed mutagenesis. In this study, we describe the effect of deletions in the N-terminal hydrophobic and hydrophilic domains of the S protein. Whereas short overlapping deletions of hydrophilic sequences flanking the first hydrophobic domain were tolerated, larger deletions of the same sequences were not. Conversely, the hydrophilic region preceding the second hydrophobic domain was not permissive for even short deletions. Deletion of part or all of the first hydrophobic domain also completely blocked secretion, confirming that the entire apolar region serves an essential function. Most of the secretion-defective deletion mutants still entered the secretory pathway and translocated at least the second hydrophilic domain across the membrane of the endoplasmic reticulum. These mutants appeared to remain arrested in a membrane-associated configuration in the endoplasmic reticulum or the cis-Golgi compartment but preserved their capacity for oligomerization with the wild-type S protein. While secretion of wild-type S protein was specifically blocked by the formation of intracellularly retained mixed envelope aggregates, secretion of an unrelated protein (interleukin 9) was completely unaffected.  相似文献   

4.
Hepatitis B immunoglobulin is used for prophylaxis against hepatitis B virus (HBV) and is thought to act by neutralization of virions and hepatitis B virus surface antigen (HBsAg)-containing particles in circulation. Using a panel of hepatocyte-derived cell lines, the present study investigated in vitro whether HBs-specific immunoglobulin G (IgG) is internalized in hepatocytes and whether it interacts with HBsAg in the cells. By immunoelectron microscopy and immunoblotting, human IgG and FcRn receptor for IgG were demonstrated on cellular membranes and in cytoplasmic extracts, irrespective of the HBsAg status of the cells. Furthermore, HBsAg and anti-HBs were shown to be colocalized in the same cellular compartment by two-color confocal microscopy. Endocytosis of HBs-specific IgG caused intracellular accumulation of HBsAg in a dose-dependent manner and inhibited the secretion of HBsAg and HBV virions from the cells. These effects were not observed with F(ab)(2) fragments or nonimmune IgG as controls. The specificity of intracellular HBsAg- anti-HBs interaction was further investigated in cells transfected with HBV genomes expressing wild-type HBsAg or immune escape HBsAg (with a G145R mutation). Monoclonal anti-HBs markedly reduced the secretion of wild-type HBsAg, while the secretion of mutant HBsAg was not affected. These results suggest that HBs-specific IgG binds to hepatocytes and interacts with HBsAg within the cells. This may be relevant for the selection of surface antibody escape mutations.  相似文献   

5.
A new system designed for cell surface display of recombinant proteins on Escherichia coli was evaluated for expression of eukaryotic viral antigens. The major surface antigen of hepatitis B virus (HBsAg) was fused to the ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, whole-cell ELISA, and ice nucleation activity assay confirmed expression of recombinant proteins on the surface of Escherichia coli. This study indicated that INP-based cell surface display can be used for epitope mapping and recombinant bacteria expressing hepatitis viral antigens may be used for developing live vaccines.  相似文献   

6.
7.
Various domains of hepatitis B surface antigen (HBsAg) are essential for the assembly and secretion of hepatitis D virus (HDV). This study investigated the influences of the levels and sequences of HBsAg of naturally occurring HBV variants on the assembly and secretion of HDV. Six hepatitis B virus (HBV)-producing plasmids (three genotype B and three genotype C) and six HBsAg expression plasmids that expressed various HBsAg levels were constructed from the sera of HDV-infected patients. These plasmids were cotransfected with six expression plasmids of HDV of genotype 1, 2, or 4 into the Huh-7 hepatoma cell line. Serum HBsAg and HBV DNA levels were correlated with HDV RNA levels and outcomes of chronic hepatitis D (CHD) patients. The secretion of genotype 1, 2, or 4 HDV generally correlated with HBsAg levels but not with HBV genotypes or HBV DNA levels. Swapping and residue mutagenesis experiments of HBsAg-coding sequences revealed that the residue Pro-62 in the cytosolic domain-I affects the assembly and secretion of genotype 2 and 4 HDV and not those of genotype 1. The pre-S2 N-terminal deletion HBV mutant adversely affects secretion of the three HDV genotypes. In patients, serum HDV RNA levels correlated with HBsAg levels but not with HBV DNA levels. Viremia of HDV or HBV correlated with poor outcomes. In conclusion, the assembly and secretion of HDV were influenced by the amounts and sequences of HBsAg. For an effective treatment of CHD, reduction of HBsAg production in addition to the suppression of HBV and HDV replication might be crucial.  相似文献   

8.
A hepatitis B core antigen (HBcAg) gene bearing the 39-amino-acid-long domain A of hepatitis B surface antigen (HBsAg) within the HBcAg immunodominant loop has been constructed and expressed in Escherichia coli. Chimeric capsids demonstrated HBs but not HBc antigenicity and elicited in mice B-cell and T-cell responses against native HBcAg and HBsAg.  相似文献   

9.
目的 探讨乙型肝炎e抗原阴性[HBeAg(-)]乙肝患者血清乙肝病毒大蛋白(HBV-LP)和乙肝前S1抗原(PreS1-Ag)联合检测的临床意义。方法 采用酶联免疫吸附(ELISA)法测定300例慢性乙肝患者的血清HBV-LP和PreS1-Ag浓度;实时荧光定量PCR(qRT-PCR)法检测血清HBV-DNA表达量;比较不同HBV-M模式下HBV-LP、PreS1-Ag与HBV-DNA的阳性检出率;分析以HBV-DNA表达量作为HBV感染及复制的金标准时,血清HBV-LP和PreS1-Ag单独检测及联合检测对HBeAg阴性乙肝患者的阳性预测值和阴性预测值。结果 (1)115例HBeAg(+)血清中,HBV-LP和PreS1-Ag的阳性率均与HBV-DNA阳性率差异无统计学意义(Ps>0.05);120例HBeAg(-)HBeAb(+)血清中,HBV-LP阳性率(64.2%)明显高于HBV-DNA阳性率(P<0.05),而PreS1-Ag阳性率与HBV-DNA阳性率差异无统计学意义(P>0.05);65例HBeAg(-)HBeAb(-)血清中,HBV-LP阳性率(72.3%)和PreS1-Ag阳性率(67.7%)均明显高于HBV-DNA阳性率(Ps<0.05);(2)以185例HBeAg(-)乙肝患者的HBV-DNA表达量为参考标准,HBV-LP、PreS1-Ag的阳性预测值分别为72.6%、71.6%,阴性预测值分别为93.4%、84.1%;HBV-LP和PreS1-Ag联合检测,HBV-LP/PreS1-Ag双阳性中的HBV-DNA阳性率(66.0%)显著高于HBV-LP/PreS1-Ag双阴性(P<0.05)。结论 血清HBV-LP和PreS1-Ag水平与HBV-DNA表达量有关,二者联合检测可灵敏地反映HBeAg(-)乙肝患者HBV的复制状态,预测HBV-DNA水平。  相似文献   

10.
V Bruss  D Ganem 《Journal of virology》1991,65(7):3813-3820
Cells infected with hepatitis B virus produce both virions and 20-nm subviral (surface antigen or HBsAg) particles; the latter are composed of viral envelope proteins and host-derived lipid. Although hepatitis B virus encodes three envelope proteins (L, M, and S), all of the information required to produce an HBsAg particle resides within the S protein. This polypeptide spans the bilayer at least twice and contains three hydrophobic regions, two of which are known to harbor topogenic signal sequences that direct this transmembrane orientation. We have examined the effects of mutations in these and other regions of the S protein on particle assembly and export. Lesions in the N terminal signal sequence (signal I) can still insert into the endoplasmic reticulum bilayer but do not participate in any of the subsequent steps in assembly. Deletion of the major internal signal (signal II) completely destabilizes the chain. Deletion of the C-terminal hydrophobic domain results in a stable, glycosylated, but nonsecreted chain. However, when coexpressed with wild-type S protein this mutant polypeptide can be incorporated into particles and secreted, indicating that the chain is still competent for some of the distal steps in particle assembly. The correct transmembrane disposition of the N terminus of the molecule is important for particle formation: addition of a heterologous (globin) domain to this region impairs secretion, but the defect can be corrected by provision of an N-terminal signal sequence that restores the proper topology of this region. The resulting chimeric chain is assembled into subviral particles that are secreted with normal efficiency.  相似文献   

11.
DNA vaccines encoding a viral protein have been shown to induce antiviral immune responses and provide protection against subsequent viral challenge. In this study, we show that the efficacy of a DNA vaccine can be greatly improved by simultaneous expression of interleukin-2 (IL-2). Plasmid vectors encoding the major (S) or middle (pre-S2 plus S) envelope proteins of hepatitis B virus (HBV) were constructed and compared for their potential to induce hepatitis B surface antigen (HBsAg)-specific immune responses with a vector encoding the middle envelope and IL-2 fusion protein or with a bicistronic vector separately encoding the middle envelope protein and IL-2. Following transfection of cells in culture with these HBV plasmid vectors, we found that the encoded major protein was secreted while the middle protein and the fusion protein were retained on the cell membrane. Despite differences in localization of the encoded antigens, plasmids encoding the major or middle proteins gave similar antibody and T-cell proliferative responses in the vaccinated animals. The use of plasmids coexpressing IL-2 and the envelope protein in the fusion or nonfusion context resulted in enhanced humoral and cellular immune responses. In addition, the vaccine efficacy in terms of dosage used in immunization was increased at least 100-fold by coexpression of IL-2. We also found that DNA vaccines coexpressing IL-2 help overcome major histocompatibility complex-linked nonresponsiveness to HBsAg vaccination. The immune responses elicited by HBV DNA vaccines were also modulated by coexpression of IL-2. When restimulated with antigen in vitro, splenocytes from mice that received plasmids coexpressing IL-2 and the envelope protein produced much stronger T helper 1 (Th1)-like responses than did those from mice that had been given injections of plasmids encoding the envelope protein alone. Coexpression of IL-2 also increased the Th2-like responses, although the increment was much less significant.  相似文献   

12.
Two chimpanzees immunized with woodchuck hepatitis virus (WHV) surface antigen (WHsAg) developed antibodies cross-reactive with hepatitis B virus (HBV) surface antigen (HBsAg). After challenge with HBV, one animal was completely protected and the other experienced a subclinical infection, without evidence of liver disease. Three woodchucks immunized with HBsAg developed antibodies to HBsAg which did not cross-react with WHsAg. After challenge with WHV, all three woodchucks developed typical acute infections with associated hepatic lesions. Serological studies with the cross-reactive antibodies raised in chimpanzees suggested that the protective epitopes of WHsAg were related to the group a specificity of HBsAg. These studies indicated that cross-protective epitopes are shared by HBV and WHV; however, the humoral response to these epitopes can vary among species.  相似文献   

13.
Z Xu  V Bruss    T S Yen 《Journal of virology》1997,71(7):5487-5494
Hepatitis B virus small surface protein is synthesized as a transmembrane protein of the rough endoplasmic reticulum (RER) and then buds into the lumen in the form of subviral particles that are secreted. The closely related large surface protein is also targeted to the RER but is retained in a pre-Golgi compartment and cannot be secreted. It has been assumed that the large surface protein remains as a transmembrane RER protein and hence cannot form particles, possibly because of binding to a host factor on the cytosolic face of the RER membranes. We have reexamined this question and found the following results. (i) The retained large surface protein is associated not with RER but, rather, with a more distal compartment. (ii) Electron microscopy reveals intravesicular 20-nm particles, similar to those formed by the small surface protein. (iii) The large surface protein colocalizes with and binds to calnexin, an ER chaperone protein. Therefore, our results indicate that the large surface protein is capable of budding and forming particles, and hence its intracellular retention cannot be attributed to a cytosolic factor. We interpret the data as evidence that the large surface protein is retained by virtue of interacting with calnexin, a component of what is considered the quality control mechanism of the ER.  相似文献   

14.
Expression of S protein, an envelope protein of hepatitis B virus, in the absence of other viral proteins, leads to the secretion of hepatitis B virus surface antigen (HBsAg) particles that are formed by budding from the endoplasmic reticulum membranes. The HBsAg particles produced by mouse fibroblast cells show a unique lipid composition, with 1,2-diacyl glycerophosphocholine being the dominant component. The lipid organization of the HBsAg particles was studied by measuring electron spin resonance (ESR) using various spin-labeled fatty acids, and the results were compared with a parallel study on HVJ (Sendai virus) and vesicles reconstituted with total lipids of the HBsAg particles (HBs-lipid vesicles). HVJ and the HBs-lipid vesicles showed typical ESR spectra of lipids arranged in a lipid bilayer structure. In contrast, the ESR spectra obtained with the HBsAg particles showed that the movement of lipids in the particle is severely restricted and a typical immobilized signal characteristic of tight lipid-protein interactions was also evident. Phosphatidylcholine (PC) in the HBsAg particles was not exchangeable by a PC-specific exchange protein purified from bovine liver, while phospholipase A(2) from Naja naja vemon was able to hydrolyze all the PC in the particles. These analyses suggest that the lipids in the HBsAg particles are not organized in a typical lipid bilayer structure, but are located at the surface of the particles and are in a highly immobilized state. Based on these observations we propose a unique lipid assembly and membrane structure model for HBsAg particles.  相似文献   

15.
We evaluated the potential of an intracellularly expressed antibody fragment to interfere with hepatitis B virus (HBV). Sequences coding for the immunoglobulin variable regions of the HBV surface antigen (HBsAg) specific monoclonal antibody 5C3 were isolated and characterized. A secretory pathway-targeted, 5C3 derived single chain Fv (sFv) fragment was expressed in HuH-7 hepatocellular carcinoma cells together with HBsAg. Quantification of extracellular HBsAg levels in the cell culture supernatant demonstrated that the presence of the 5C3 sFv equipped with a secretory pathway retention signal SEKDEL reduced extracellular HBsAg levels by a mean of 85%. Co-immunoprecipitation studies revealed that the 5C3 sFv targeted to the secretory pathway physically interacted with its target antigen, HBsAg. Confocal microscopy studies confirmed the intracellular expression and colocalization of the 5C3 sFv and HBsAg. We conclude that certain intracellularly expressed antibody fragments will substantially interfere with HBV antigen secretion from the cell.  相似文献   

16.
The PLC/PRF/5 cell line derived from a human hepatoma produces hepatitis B surface antigen (HBsAg) in 22-nm particles of the same buoyant density as those found in the serum of infected patients. The HBsAg particles from this cell line were labeled with [35S]methionine and purified, and the polypeptides were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with those of serum-derived particles. The two major polypeptides of serum-derived HBsAg particles (p20 and p23) were found in the same relative amounts in the particles from the cell line. The three smallest of the five minor components observed in HBsAg particles from serum were present in particles from the cell line. These polypeptides (p31, p36, and p43), as well as p20 and p23, were precipitated with anti-HBs-containing serum. The two largest polypeptides of serum particles (p49 and p66) were not detected in particles from these cells. When the PLC/PRF/5 HBsAg particles were radiolabeled with tritiated sugars, p23, and not p20, was found to contain radioactivity, indicating that the pattern of polypeptide glycosylation is similar to that of serum HBsAg. None of the other possible gene products of hepatitis B virus was detected in the PLC/PRF/5-derived HBsAg particles, in the cells, or in the cell supernatants.  相似文献   

17.
J Pugh  A Zweidler    J Summers 《Journal of virology》1989,63(3):1371-1376
The amino acid composition of the major duck hepatitis B virus (DHBV) core particle proteins was determined. The results of this analysis indicated that cores are composed of a single major protein that initiates translation from the second available AUG in the DHBV core gene. Proteins isolated from core particles purified from the cytoplasm of DHBV-infected duck hepatocytes exhibited heterogeneity in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, independent of the stage of viral DNA maturation. Incubation of native cores with alkaline phosphatase removed this heterogeneity, indicating that phosphorylation of external amino acids was responsible. Core protein isolated from mature DHBV purified from serum of infected animals did not display heterogeneity, suggesting a possible role for dephosphorylation in virus maturation.  相似文献   

18.
19.
Expression and secretion of hepatitis B viral surface antigen in E. coli   总被引:1,自引:0,他引:1  
Hepatitis B viral surface antigen (HBsAg) gene was subcloned into the BglII site of Bacillus licheniformis penicillinase (penP) gene of secretory vector pJP104. Expression and secretion of HBsAg protein was achieved by the E. coli CS412 carrying the plasmid pJPS2 in which the penP:HBsAg hybrid gene was under the control of two promoters, lipoprotein (lpp) and penP, spaced 450 bases apart. The secreted form of HBsAg encoded by the hybrid penP: HBsAg gene of plasmid pJPS2 was purified by immunoaffinity chromatography and found to be a 25 kilodalton protein.  相似文献   

20.
The oligosaccharide processing and secretion of hepatitis B surface antigen (HBsAg) was studied in Chinese hamster ovary cells stably transfected with the gene coding HBsAg. HBsAg was secreted from cells with a relatively long half time (ca. 5 h). This appeared to be a characteristic of HBsAg itself, since HBsAg-producing cells infected with vesicular stomatitis virus transported the viral envelope glycoprotein to the cell surface with normal kinetics (half time of ca. 30 min). The secreted HBsAg was comprised of both the unglycosylated (P20) and the glycosylated (G25) polypeptides, characteristic of HBsAg isolated from human serum or secreted from other cell lines (C. W. Crowley, C.-C. Liu, and A. D. Levinson, Mol. Cell. Biol. 3:44-55, 1983; M. F. Dubois, C. Pourcel, S. Rousset, C. Chang, and P. Tiollais, Proc. Natl. Acad. Sci. U.S.A. 77:4549-4553, 1980; C.-C. Liu, D. Yansura, and A. D. Levinson, DNA, 1:213-221, 1982; G. M. Macnab, J. J. Alexander, G. Lecatsas, E. M. Bey, and J. M. Urbanocvicz, Br. J. Cancer, 24:509-515, 1976; A. M. Moriarity, B. H. Hoyer, J. W.-K. Shih, J. L. Gerin, and D. H. Hamer, Proc. Natl. Acad. Sci. U.S.A. 78:2606-2610, 1981; D. L. Peterson, J. Biol. Chem., 256:6975-6983, 1981). The glycosylated polypeptide (GP25) contained complex oligosaccharide chains. Cell-associated HBsAg also was comprised of both an unglycosylated and a glycosylated polypeptide; however, the glycosylated form (GP23) contained only high-mannose oligosaccharide chains. No oligosaccharide processing of the high-mannose chains could be detected within the cells. Thus, most of the time before secretion of HBsAg from cells must have been spent in a pre-Golgi or early Golgi compartment. Glycosylation was inhibited completely by tunicamycin, although unglycosylated particles were still secreted from cells and were antigenic. The secretion and oligosaccharide processing of HBsAg were inhibited with high concentrations of monensin, but at lower concentrations of monensin HBsAg was still secreted, although only half of the oligosaccharide chains were processed to the complex form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号