首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
WLR1, a biotype of Lolium rigidum Gaud. that had been treated with the sulfonylurea herbicide chlorsulfuron in 7 consecutive years, was found to be resistant to both the wheat-selective and the nonselective sulfonylurea and imidazolinone herbicides. Biotype SLR31, which became cross-resistant to chlorsulfuron following treatment with the aryloxyphenoxypropionate herbicide diclofop-methyl, was resistant to the wheat-selective, but not the nonselective, sulfonylurea and imidazolinone herbicides. The concentrations of herbicide required to reduce in vitro acetolactate synthase (ALs) activity 50% with respect to control assays minus herbicide for biotype WLR1 was greater than those for susceptible biotype VLR1 by a factor of >30, >30, 7,4, and 2 for the herbicides chlorsulfuron, sulfometuron-methyl, imazapyr, imazathapyr, and imazamethabenz, respectively. ALS activity from biotype SLR31 responded in a similar manner to that of the susceptible biotype VLR1. The resistant biotypes metabolized chlorsulfuron more rapidly than the susceptible biotype. Metabolism of 50% of [phenyl-U-14C]chlorsulfuron in the culms of two-leaf seedlings required 3.7 h in biotype SLR31, 5.1 h in biotype WLR1, and 7.1 h in biotype VLR1. In all biotypes the metabolism of chlorsulfuron in the culms was more rapid than that in the leaf lamina. Resistance to ALS inhibitors in L. rigidum may involve at least two mechanisms, increased metabolism of the herbicide and/or a herbicide-insensitive ALS.  相似文献   

2.
Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS.  相似文献   

3.
Annual ryegrass (Lolium rigidum) biotype SLR 31 is resistant to the postemergent graminicide methyl-2-[4-(2,4-dichlorophenoxy)phenoxy]-propanoate (diclofop-methyl). Uptake of [14C](U-phenyl)diclofop-methyl and root/shoot distribution of radioactivity in susceptible and resistant plants were similar. In both biotypes, diclofop-methyl was rapidly demethylated to the biocidal metabolite diclofop acid which, in turn, was metabolized to ester and aryl-O-sugar conjugates. Susceptible plants accumulated 5 to 15% more radioactivity in dicloflop acid than did resistant plants. Resistant plants had a slightly greater capacity to form nonbiocidal sugar conjugates. Despite these differences, resistant plants retained 20% of 14C in the biocidal metabolite diclofop acid 192 hours after treatment, whereas susceptible plants, which were close to death, retained 30% in diclofop acid. The small differences in the pool sizes of the active and inactive metabolites are by themselves unlikely to account for a 30-fold difference in sensitivity to the herbicide at the whole plant level. Similar high-pressure liquid chromatography elution patterns of conjugates from both susceptible and resistant biotypes indicated that the mechanisms and the products of catabolism in the biotypes are similar. It is suggested that metabolism of diclofop-methyl by the resistant biotype does not alone explain resistance observed at the whole-plant level. Diclofop acid reduced the electrochemical potential of membranes in etiolated coleoptiles of both biotypes; 50% depolarization required 1 to 4 μm diclofop acid. After removal of diclofop acid, membranes from the resistant biotype recovered polarity, whereas membranes from the susceptible biotype did not. Internal concentrations of diclofop acid 4 h after exposing plants to herbicide were estimated to be 36 to 39 micromolar in a membrane fraction and 16 to 17 micromolar in a soluble fraction. Such concentrations should be sufficient to fully depolarize membranes. It is postulated that differences in the ability of membranes to recover from depolarization are correlated with the resistance response of biotype SLR 31.  相似文献   

4.
R Busi  M M Vila-Aiub  S B Powles 《Heredity》2011,106(5):817-824
The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a well-characterized Lolium rigidum biotype. The phenotypic resistance segregation in herbicide resistant and susceptible parents, F1, F2 and backcross (BC) families was analyzed as plant survival following treatment with the chemically unrelated herbicides diclofop-methyl or chlorsulfuron. Dominance and nuclear gene inheritance was observed in F1 families when treated at the recommended field doses of both herbicides. The segregation values of P450 herbicide resistance phenotypic traits observed in F2 and BC families was consistent with resistance endowed by two additive genes in most cases. In obligate out-crossing species such as L. rigidum, herbicide selection can easily result in accumulation of resistance genes within individuals.  相似文献   

5.
The herbicidally active aryloxyphenoxypropionates diclofop acid, haloxyfop acid, and fluazifop acid and the cyclohexanedione sethoxydim depolarized membranes in coleoptiles of eight biotypes of herbicide-susceptible and herbicide-resistant annual ryegrass (Lolium rigidum). Membrane polarity was reduced from −100 millivolts to −30 to −50 millivolts. Membranes repolarized after removal of the compounds only in biotypes with resistance to the compound added. Repolarization was not observed in herbicide-susceptible L. rigidum, nor was it observed in biotypes resistant to triazine, triazole, triazinone, phenylurea, or sulfonylurea herbicides but not resistant to aryloxyphenoxypropionates and cyclohexanediones. Chlorsulfuron, a sulfonylurea herbicide, at a saturating concentration of 1 micromolar, reduced membrane polarity in all biotypes studied by only 15 millivolts. The recovery of membrane potential following the removal of chlorsulfuron was restricted to chlorsulfuron-susceptible and -resistant biotypes that did not exhibit diclofop resistance. These differences in membrane responses are correlated with resistance to dicloflop rather than with resistance to chlorsulfuron. It is suggested that the differences may reflect altered membrane properties of diclofop-resistant biotypes. Further circumstantial evidence for dissimilarity of properties of membranes from diclofop-resistant and diclofop-susceptible ryegrass is provided by observations that K+/Na+ ratios were significantly higher in coleoptiles from diclofop-resistant biotypes than in coleoptiles from susceptible plants. Intact and excised roots from susceptible biotypes were capable of acidifying the external medium, whereas roots from resistant biotypes were unable to do so. The ineluctable conclusion is that in L. rigidum the phenomena of membrane repolarization and resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides are correlated.  相似文献   

6.
Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistant kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I50 to susceptible I50) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [14C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The Km values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mm, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme.  相似文献   

7.
The spectrum of herbicide resistance was determined in an annual ryegrass (Lolium rigidum Gaud.) biotype (SLR 3) that had been exposed to the grass herbicide sethoxydim, an inhibitor of the plastidic enzyme acetylcoenzyme A carboxylase (ACCase, EC 6.4.1.2), for three consecutive years. This biotype has an 18-fold resistance to sethoxydim and enhanced resistance to other cyclohexanedione herbicides compared with a susceptible biotype (VLR 1). The resistant biotype also has a 47- to >300-fold cross-resistance to the aryloxyphenoxypropanoate herbicides which share ACCase as a target site. No resistance is evident to herbicide with a target site different from ACCase. The absorption of [4-14C]sethoxydim, the rate of metabolic degradation and the nature of the herbicide metabolites are similar in the resistant and susceptible biotypes. While the total activity of the herbicide target enzyme ACCase is similar in extracts from the two biotypes, the kinetics of herbicide inhibition differ. The concentrations of sethoxydim and tralkoxydim required to inhibit the activity of ACCase by 50% are 7.8 and >9.5 times higher, respectively, in the resistant biotype. The activity of ACCase from the resistant biotype was also less sensitive to aryloxyphenoxypropanode herbicides than the susceptible biotype. The spectrum of resistance at the whole-plant level is correlated with resistance at the ACCase level and confirms that a less sensitive form of the target enzyme endows resistance in biotype SLR 3.Abbreviations ACCase acetyl-coenzyme A carboxylase - AOPP aryloxyphenoxypropanoate - CHD cyclohexanedione - GR50 dose giving 50% reduction of growth - IG50 dose giving 50% reduction of germination - LD50 lethal dose 50 This work was partially supported by The Grains Research and Development Corporation of Australia through a grant to Dr. R. Knight, Department of Plant Science, Waite Agricultural Research Institute. The encouragement and generous support of Dr. R. Knight is gratefully acknowledged.  相似文献   

8.
Rapid and widespread evolution of multiple herbicide resistance in global weed species endowed by increased capacity to metabolize (degrade) herbicides (metabolic resistance) is a great threat to herbicide sustainability and global food production. Metabolic resistance in the economically damaging crop weed species Lolium rigidum is well known but a molecular understanding has been lacking. We purified a metabolic resistant (R) subset from a field evolved R L. rigidum population. The R, the herbicide susceptible (S) and derived F2 populations were used for candidate herbicide resistance gene discovery by RNA sequencing. A P450 gene CYP81A10v7 was identified with higher expression in R vs. S plants. Transgenic rice overexpressing this Lolium CYP81A10v7 gene became highly resistant to acetyl-coenzyme A carboxylase- and acetolactate synthase-inhibiting herbicides (diclofop-methyl, tralkoxydim, chlorsulfuron) and moderately resistant to hydroxyphenylpyruvate dioxygenase-inhibiting herbicide (mesotrione), photosystem II-inhibiting herbicides (atrazine and chlorotoluron) and the tubulin-inhibiting herbicide trifluralin. This wide cross-resistance profile to many dissimilar herbicides in CYP81A10v7 transgenic rice generally reflects what is evident in the R L. rigidum. This report clearly showed that a single P450 gene in a cross-pollinated weed species L. rigidum confers resistance to herbicides of at least five modes of action across seven herbicide chemistries.  相似文献   

9.
Many biotypes of Lolium rigidum Gaud, (annual ryegrass) have developed resistance to herbicides; however, few have developed resistance to phenylurea herbicides. Two biotypes with different histories of herbicide selection pressure were six to eight times less sensitive to the phenylurea herbicide, chlorotoluron, than a susceptible biotype. Resistance was not due to differences in the herbicide target site as oxygen evolution by thylakoids isolated from resistant and susceptible biotypes was similarly inhibited by diuron and chlorotoluron. There was no difference in the uptake and distribution of chlorotoluron into resistant and susceptible plants. There was a twofold greater rate of chlorotoluron detoxification in resistant plants with N-demethylation being a major detoxification reaction. Resistant plants treated with a 3-h pulse of 120 M chlorotoluron recovered net carbon fixation after 42 h, half the time taken by susceptible plants. The mixed-function oxidase inhibitor 1-aminobenzotriazole (70 M) intensified the effects of chlorotoluron in resistant plants when applied in combination with the herbicide for 7 d. 1-Aminobenzotriazole also inhibited the metabolism of chlorotoluron in both resistant and susceptible plants. The cytochrome P-450 inhibitor, piperonyl butoxide piperonyl butoxide, interacted with chlorotoluron when applied to plants growing in soil. Chlorotoluron applied with reduced plant dry weight to a greater extent than chlorotoluron alone. It appears, therefore, that enhanced detoxification is the major mechanism of resistance to chlorotoluron in the resistant biotypes studied.Abbreviations ABT 1-aminobenzotriazole - VLR1 Victorian L. rigidum biotype 1 — herbicide susceptible - VLR69 Victorian L. rigidum biotype 69 — herbicide resistant - WLR2 Western Australian L. rigidum biotype 2 — herbicide resistant M.W.M.B, was supported by an Australian Postgraduate Research Award and a supplementary scholarship from the Grains Research and Development Corporation. We are very grateful to Dr. E. Ebert, Ciba Geigy, Basal, Switzerland for providing [14C]chlorotoluron and standards of chlorotoluron metabolites. We express our gratitude to Dr. John Huppatz of the CSIRO Division of Plant Industry for providing ABT. We also thank Ciba Geigy Australia for providing technical-grade chlorotoluron and formulated phenylurea herbicides.  相似文献   

10.
The study aimed to determine the usefulness of isothermal calorimetry and FT-Raman spectroscopy for the early evaluation of rigid ryegrass resistance to fenoxaprop-P ethyl (active ingredient one of aryloxyphenoxypropionate herbicides). The calorimetric measurements were done on the 4-day-old seedlings of susceptible and resistant biotypes of rigid ryegrass (Lolium rigidum Goud.) for 72 h, at 20 °C. It was observed that the specific thermal power–timecurves of the susceptible and resistant biotypes growing on water (control) were qualitatively similar. Herbicides changed the shape of the specific thermal power–time curves of both biotypes. Furthermore, the total specific thermal energy was significantly higher for the seedlings of resistant biotype, growing both on water or herbicide, as compared to the susceptible ones. The analysis of the seedlings’ endosperm, conducted using FT-Raman spectroscopy, showed a weaker intensity of the bands in the spectra derived from the resistant biotype. Differences in the specific thermal power–time curves and FT-Raman spectra between susceptible and resistant biotypes growing on water indicate that the sensitive and resistant biotypes are metabolically and chemically different already in the early stages of the seedling growth. We conclude that isothermal calorimetry and FT-Raman spectroscopy are efficient tools for the early detection of rigid ryegrass resistance to fenoxaprop-P ethyl.  相似文献   

11.
Yu Q  Cairns A  Powles S 《Planta》2007,225(2):499-513
Glyphosate is the world’s most widely used herbicide. A potential substitute for glyphosate in some use patterns is the herbicide paraquat. Following many years of successful use, neither glyphosate nor paraquat could control a biotype of the widespread annual ryegrass (Lolium rigidum), and here the world’s first case of multiple resistance to glyphosate and paraquat is confirmed. Dose–response experiments established that the glyphosate rate causing 50% mortality (LD50) for the resistant (R) biotype is 14 times greater than for the susceptible (S) biotype. Similarly, the paraquat LD50 for the R biotype is 32 times greater than for the S biotype. Thus, based on the LD50 R/S ratio, this R biotype of L. rigidum is 14-fold resistant to glyphosate and 32-fold resistant to paraquat. This R biotype also has evolved resistance to the acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of paraquat resistance in this biotype was determined as restricted paraquat translocation. Resistance to ACCase-inhibiting herbicides was determined as due to an insensitive ACCase. Two mechanisms endowing glyphosate resistance were established: firstly, a point mutation in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, resulting in an amino acid substitution of proline to alanine at position 106; secondly, reduced glyphosate translocation was found in this R biotype, indicating a co-occurrence of two distinct glyphosate resistance mechanisms within the R population. In total, this R biotype displays at least four co-existing resistance mechanisms, endowing multiple resistance to glyphosate, paraquat and ACCase herbicides. This alarming case in the history of herbicide resistance evolution represents a serious challenge for the sustainable use of the precious agrochemical resources such as glyphosate and paraquat.  相似文献   

12.
There has been much debate regarding the potential for reduced rates of herbicide application to accelerate evolution of herbicide resistance. We report a series of experiments that demonstrate the potential for reduced rates of the acetyl-co enzyme A carboxylase (ACCase)-inhibiting herbicide diclofop-methyl to rapidly select for resistance in a susceptible biotype of Lolium rigidum. Thirty-six percent of individuals from the original VLR1 population survived application of 37.5 g diclofop-methyl ha–1 (10% of the recommended field application rate). These individuals were grown to maturity and bulk-crossed to produce the VLR1 low dose-selected line VLR1 (0.1). Subsequent comparisons of the dose-response characteristics of the original and low dose-selected VLR1 lines demonstrated increased tolerance of diclofop-methyl in the selected line. Two further rounds of selection produced VLR1 lines that were resistant to field-applied rates of diclofop-methyl. The LD50 (diclofop-methyl dose required to cause 50% mortality) of the most resistant line was 56-fold greater than that of the original unselected VLR1 population, indicating very large increases in mean population survival after three cycles of selection. In vitro ACCase inhibition by diclofop acid confirmed that resistance was not due to an insensitive herbicide target-site. Cross-resistance studies showed increases in resistance to four herbicides: fluazifop-P-butyl, haloxyfop-R-methyl, clethodim and imazethapyr. The potential genetic basis of the observed response and implications of reduced herbicide application rates for management of herbicide resistance are discussed.  相似文献   

13.
A biotype of Stellaria media (L.) Vill. has been identified that is highly resistant to the herbicide chlorsulfuron. Resistance is due to an altered acetolactate synthase (ALS) that is much less sensitive to chlorsulfuron than the ALS from the susceptible (S) biotype. The S biotype was extremely sensitive to D489 (N-[2,6-dichlorophenyl]-5,7-dimethyl-1,2,4-triazolo[1,5a] pyrimidine-2-sulfonamide), a member of a new class of triazolopyrimidine herbicides, while the chlorsulfuron-resistant biotype exhibited complete cross-resistance at both the whole plant and enzyme levels. ALS activity of the S biotype was reduced by approximately 90% in the presence of 0.1 micromolar D489, while that of the R biotype was reduced by less than 10%. This result suggests that the two herbicides share a common binding site on ALS. Only very slight cross-resistance at the ALS level was found to imazamethabenz, an imidazolinone herbicide.  相似文献   

14.
Electrophysiological measurements were made on root tip cells in the elongation zone of diclofop-methyl-resistant (SR4/84) and -susceptible (SRS2) biotypes of annual ryegrass (Lolium rigidum Gaud.) from Australia. The phytotoxic action of diclofop-methyl (methyl 2-[4-(2′,4′-dichlorophenoxy)phenoxy]propanoate) on susceptible whole plants was completely reversed by a simultaneous application of 2,4-dichlorophenoxyacetic acid (dimethylamine salt). The phytotoxic acid metabolite, diclofop (50 micromolar), depolarized membrane potentials of both biotypes to a steady-state level within 10 to 15 minutes. Repolarization of the membrane potential occurred only in the resistant biotype following removal of diclofop. The resistant biotype has an intrinsic ability to reestablish the electrogenic membrane potential, whereas the susceptible biotype required an exogeneous source of IAA to induce partial repolarization. Both biotypes were susceptible to depolarization by carbonylcyanide-m-chlorophenylhy-drazone (CCCP), and their membrane potentials recovered upon removal of CCCP. A 15-minute pretreatment with p-chloromercuribenzenesulphonic acid (PCMBS) blocked the depolarizing action of diclofop in both biotypes. However, PCMBS had no effect on the activity of CCCP. The action of diclofop appears to involve a site-specific interaction at the plasmalemma in both Lolium biotypes to cause the increased influx of protons into sensitive cells. The differential response of membrane depolarization and repolarization to diclofop treatment may be a significant initial reaction in the eventual phytotoxic action of the herbicide.  相似文献   

15.
A biotype of Avena sterilis ssp. ludoviciana is highly resistantto a range of herbicides which inhibit a key enzyme in fattyacid synthesis, acetyl-CoA carboxylase (ACCase). Possible mechanismsof herbicide resistance were investigated in this biotype. Acetyl-CoAcarboxylase from the resistant biotype is less sensitive toinhibition by herbicides to which resistance is expressed. I50values for herbicide inhibition of ACCase were 52 to 6 timesgreater in the resistant biotype than in the susceptible biotype.This was the only major difference found between the resistantand susceptible biotypes. The amount of ACCase in the meristemsof the resistant and susceptible is similar during ontogenyand no difference was found in distribution of ACCase betweenthe two biotypes. Uptake, translocation and metabolism of [14C]diclofop-methylwere not different between the two biotypes. In vivo, ACCaseactivity in the meristems of the susceptible biotype was greatlyinhibited by herbicide application whereas only 25% inhibitionoccurred in the resistant biotype. Depolarisation of plasmamembrane potential by 50 µM diclofop acid was observedin both biotypes and neither biotype showed recovery of themembrane potential following removal of the herbicide. Hence,a modified form of ACCase appears to be the major determinantof resistance in this resistant wild oat biotype. (Received February 10, 1994; Accepted March 11, 1994)  相似文献   

16.
A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative.  相似文献   

17.
Richter J  Powles SB 《Plant physiology》1993,102(3):1037-1041
Herbicide resistance can occur either through target-site insensitivity or by nontarget site-based mechanisms. Two herbicide-resistant biotypes of Lolium rigidum Gaud., one resistant to acetolactate synthase (ALS)-inhibiting herbicides (biotype WLR1) and the other resistant to acetyl CoA carboxylase (ACCase)-inhibiting herbicides (biotype WLR96) through target-site insensitivity at the whole plant and enzymic levels, were found to express this resistance in the pollen. Pollen produced by resistant biotypes grew uninhibited when challenged with herbicide, whereas that from a susceptible biotype was inhibited. A third biotype, SLR31, resistant to ACCase-inhibiting and certain ALS-inhibiting herbicides at the whole plant level through nontarget site-based mechanisms, did not exhibit this expression in the pollen. The technique described may form the basis for a rapid screen for certain nuclear-encoded, target site-based herbicide-resistance mechanisms.  相似文献   

18.
A biotype of Sonchus oleraceus L. (Compositae) has developed resistance to herbicides inhibiting acetolactate synthase (ALS) following field selection with chlorsulfuron for 8 consecutive years. The aim of this study was to determine the inheritance and mechanism of resistance in this biotype. Determination of ALS activity and inhibition kinetics revealed that Km and Vmax did not vary greatly between the resistant and susceptible biotypes. ALS extracted from the resistant biotype was resistant to five ALS-inhibiting herbicides in an in vitro assay. ALS activity from the resistant biotype was 14 19, 2, 3 and 3 times more resistant to inhibition by chlorsulfuron, sulfometuron, imazethapyr, imazapyr and flumetsulam, respectively, than the susceptible biotype. Hybrids between the resistant and a susceptible biotype were produced, and inheritance was followed through the F1, F2 and F3 generations. F1 hybrids displayed a uniform intermediate level of resistance between resistant and susceptible parents. Three distinct phenotypes, resistant, intermediate and susceptible, were identified in the F2 generation following chlorsulfuron application. A segregation ratio of 121 was observed, indicative of the action of a single, nuclear, incompletely dominant gene. F3 families, derived from intermediate F2 individuals, segregated in a similar manner. Resistance to herbicides inhibiting ALS in this biotype of S. oleraceus is due to the effect of a single gene coding for a resistant form of the target enzyme, ALS.  相似文献   

19.

Background and aims

In this study, we describe the molecular, physiological and agronomic aspects involved in the resistance to acetyl coenzyme A carboxylase inhibiting herbicides (ACCase) observed in one biotype of Phalaris paradoxa from Mexico.

Methods

Dose–response Assays: The herbicide rate inhibiting plant growth of each biotype by 50% with respect to the untreated control, ED50. Enzyme purification and ACCase assays to determine herbicide rate inhibiting the enzyme of each biotype by 50% with respect to the untreated control, I50. Absorption and Translocation Assays with [14C]diclofop-methyl. Metabolism of diclofop-methyl and its metabolites were identified by thin-layer chromatography. Study of target site resistance mechanism at enzyme and molecular levels.

Results

In this work, it has been studied the whole-plant response of Phalaris paradoxa biotypes from Mexico resistant (R) and susceptible (S) to ACCase-inhibiting herbicides: aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ), and the mechanism behind their resistance were studied. To analyse the resistance mechanism, the enzyme ACCase activity was investigated. Results from biochemical assays indicated a target-site resistance as the cause of reduced susceptibility to ACCase inhibitors. The absorption, translocation and metabolism were similar between R and S biotypes. A point mutation never described before was detected within the triplet of glycine at the amino acid position 2096 (referring to EMBL accession no. AJ310767) and resulted in the triplet of serine. This new mutation could explain the loss of affinity for the ACCase-inhibiting herbicides.

Conclusions

We found a new mutation, which had never been described before. This mutation was detected within the triplet of glycine at the amino acid position 2096. This new mutation confers cross-resistance to three different chemical groups of ACCase-inhibiting herbicides.  相似文献   

20.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号