首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Computational analyses have been used to study the biomechanical microenvironment of the chondrocyte that cannot be assessed by in vitro experimental studies; yet all computational studies thus far have focused on the effect of zonal location (superficial, middle, and deep) on the mechanical microenvironment of chondrocytes. The aim of this paper was to study the effect of both zonal and radial locations on the biomechanical microenvironment of chondrocytes in inhomogeneous cartilage under unconfined stress relaxation. A biphasic multiscale approach was employed and nine chondrocytes in different locations were studied. Hyperelastic biphasic theory and depth-dependent aggregate modulus and permeability of articular cartilage were included in the models. It was found that both zonal and radial locations affected the biomechanical stresses and strains of the chondrocytes. Chondrocytes in the mid-radial location had increased volume during the early stage of the loading process. Maximum principal shear stress at the interface between the chondrocyte and the extracellular matrix (ECM) increased with depth, yet that at the ECM–pericellular matrix (PCM) interface had an inverse trend. Fluid pressure decreased with depth, while the fluid pressure difference between the top and bottom boundaries of the microscale model increased with depth. Regardless of location, fluid was exchanged between the chondrocyte, PCM, and ECM. These findings suggested that even under simple compressive loading conditions, the biomechanical microenvironment of the chondrocytes, PCM and ECM was spatially dependent. The current study provides new insight on chondrocyte biomechanics.  相似文献   

2.
The articular cartilage of diarthrodial joints experiences a variety of stresses, strains and pressures that result from normal activities of daily living. In normal cartilage, the extracellular matrix exists as a highly organized composite of specialized macromolecules that distributes loads at the bony ends. The chondrocyte response to mechanical loading is recognized as an integral component in the maintenance of articular cartilage matrix homeostasis. With inappropriate mechanical loading of the joint, as occurs with traumatic injury, ligament instability, bony malalignment or excessive weight bearing, the cartilage exhibits manifestations characteristic of osteoarthritis. Breakdown of cartilage in osteoarthritis involves degradation of the extracellular matrix macromolecules and decreased expression of chondrocyte proteins necessary for normal joint function. Osteoarthritic cartilage often exhibits increased amounts of type I collagen and synthesis of proteoglycans characteristic of immature cartilage. The shift in cartilage phenotype in response to altered load yields a matrix that fails to support normal joint function. Mathematical modeling and experimental studies in animal models confirm an association between altered loading of diarthrotic joints and arthritic changes. Both types of studies implicate shear forces as a critical component in the destructive profile. The severity of cartilage destruction in response to altered loads appears linked to expression of biological factors influencing matrix integrity and cellular metabolism. Determining how shear stress alters chondrocyte metabolism is fundamental to understanding how to limit matrix destruction and stimulate cartilage repair and regeneration. At present, the precise biochemical and molecular mechanisms by which shear forces alter chondrocyte metabolism from a normal to a degenerative phenotype remain unclear. The results presented here address the hypothesis that articular chondrocyte metabolism is modulated by direct effects of shear forces that act on the cell through mechanotransduction processes. The purpose of this work is to develop critical knowledge regarding the basic mechanisms by which mechanical loading modulates cartilage metabolism in health and disease. This presentation will describe the effects of using fluid induced shear stress as a model system for stimulation of articular chondrocytes in vitro. The fluid induced shear stress was applied using a cone viscometer system to stimulate all the cells uniformly under conditions of minimal turbulence. The experiments were carried using high-density primary monolayer cultures of normal and osteoarthritic human and normal bovine articular chondrocytes. The analysis of the cellular response included quantification of cytokine release, matrix metalloproteinase expression and activation of intracellular signaling pathways. The data presented here show that articular chondrocytes exhibit a dose- and time-dependent response to shear stress that results in the release of soluble mediators and extracellular matrix macromolecules. The data suggest that the chondrocyte response to mechanical stimulation contributes to the maintenance of articular cartilage homeostasis in vivo.  相似文献   

3.
Chondrocyte regulation by mechanical load   总被引:4,自引:0,他引:4  
The effects of load on articular cartilage are complex. Dynamic loading of cartilage is associated with slight cell and tissue deformation as well as cyclical fluctuations in the hydrostatic pressure of cartilage and in fluid movement. Static loading results in expression of fluid from the tissue, concentrating extracellular matrix macromolecules and consequently increasing the concentrations of cations, reducing extracellular pH and increasing extracellular osmolarity. Each of these alterations is implicated in regulating the synthetic response of chondrocytes to load. However, the mechanisms by which these changes affect matrix turnover are poorly understood. In this review we consider how load may affect chondrocyte behaviour through its influence on membrane transport processes and thus on the intracellular environment.  相似文献   

4.
Perception of mechanical signals and the biological responses to such stimuli are fundamental properties of load bearing articular cartilage in diarthrodial joints. Chondrocytes utilize mechanical signals to synthesize an extracellular matrix capable of withstanding high loads and shear stresses. Recent studies have shown that chondrocytes undergo changes in shape and volume in a coordinated manner with load induced deformation of the matrix. These matrix changes, together with alterations in hydrostatic pressure, ionic and osmotic composition, interstitial fluid and streaming potentials are, in turn, perceived by chondrocytes. Chondrocyte responses to these stimuli are specific and well coordinated to bring about changes in gene expression, protein synthesis, matrix composition and ultimately biomechanical competence. In this hypothesis paper we propose a chondrocyte mechanoreceptor model incorporating key extracellular matrix macromolecules, integrins, mechanosensitive ion channels, the cytoskeleton and subcellular signal transduction pathways that maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression.  相似文献   

5.
Mechanical compression of the cartilage extracellular matrix has a significant effect on the metabolic activity of the chondrocytes. However, the relationship between the stress–strain and fluid-flow fields at the macroscopic “tissue” level and those at the microscopic “cellular” level are not fully understood. Based on the existing experimental data on the deformation behavior and biomechanical properties of articular cartilage and chondrocytes, a multi-scale biphasic finite element model was developed of the chondrocyte as a spheroidal inclusion embedded within the extracellular matrix of a cartilage explant. The mechanical environment at the cellular level was found to be time-varying and inhomogeneous, and the large difference (3 orders of magnitude) in the elastic properties of the chondrocyte and those of the extracellular matrix results in stress concentrations at the cell–matrix border and a nearly two-fold increase in strain and dilatation (volume change) at the cellular level, as compared to the macroscopic level. The presence of a narrow “pericellular matrix” with different properties than that of the chondrocyte or extracellular matrix significantly altered the principal stress and strain magnitudes within the chondrocyte, suggesting a functional biomechanical role for the pericellular matrix. These findings suggest that even under simple compressive loading conditions, chondrocytes are subjected to a complex local mechanical environment consisting of tension, compression, shear, and fluid pressure. Knowledge of the local stress and strain fields in the extracellular matrix is an important step in the interpretation of studies of mechanical signal transduction in cartilage explant culture models.  相似文献   

6.
In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering.  相似文献   

7.
Fibroblast-like cells in the synovial lining (type B lining cells), stroma and pannus tissue are targeted by many signals, such as the following: ligands binding to cell surface receptors; lipid soluble, small molecular weight mediators (eg nitric oxide [NO], prostaglandins, carbon monoxide); extracellular matrix (ECM)-cell interactions; and direct cell-cell contacts, including gap junctional intercellular communication. Joints are subjected to cyclic mechanical loading and shear forces. Adherence and mechanical forces affect fibroblasts via the ECM (including the hyaluronan fluid phase matrix) and the pericellular matrix (eg extracellular matrix metalloproteinase inducer [EMMPRIN]) matrices, thus modulating fibroblast migration, adherence, proliferation, programmed cell death (including anoikis), synthesis or degradation of ECM, and production of various cytokines and other mediators [1]. Aggressive, transformed or transfected mesenchymal cells containing proto-oncogenes can act in the absence of lymphocytes, but whether these cells represent regressed fibroblasts, chondrocytes or bone marrow stem cells is unclear.  相似文献   

8.
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0‐ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein‐coated substrata and P0‐ECM. Low chondrocyte attachment was observed on aggrecan‐coated substratum and P0‐ECM. Cell proliferation on aggrecan‐ and type II collagen/aggrecan‐coated substrata and P0‐ECM was lower than that on the other ECM protein (type I collagen and type II collagen)‐coated substrata. When chondrocytes were subcultured on aggrecan‐coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0‐ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0‐ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1331–1336, 2013  相似文献   

9.
The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16x molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading.  相似文献   

10.
Pseudoachondroplasia (PSACH) is an autosomal dominant disease characterized by dwarfism, morphological irregularities of long bones and hips, and early-onset osteoarthritis. This disease has been attributed to mutations in a structural protein of the cartilage extracellular matrix (ECM), cartilage oligomeric matrix protein (COMP), which result in its selective retention in the chondrocyte rough endoplasmic reticulum (ER). Accumulation of excessive amounts of mutated COMP might reflect a defect in protein trafficking by PSACH chondrocytes. Here we identify the matricellular protein SPARC as a component of this trafficking deficit. SPARC was localized to the hypertrophic chondrocytes in the normal human tibial growth plate and in cultured control cartilage nodules. In contrast, concentrated intracellular depots of SPARC were identified in nodules cultured from three PSACH patients with mutations in COMP. The accumulated SPARC was coincident with COMP and with protein disulfide isomerase, a resident chaperone of the rough ER, whereas SPARC and COMP were not coincident in the ECM of control or PSACH nodules. SPARC-null mice develop severe osteopenia and degenerative intervertebral disc disease, and exhibit attenuation of collagenous ECM. The retention of SPARC in the ER of chondrocytes producing mutant COMP indicates a new intracellular function for SPARC in the trafficking/secretion of cartilage ECM.  相似文献   

11.
The extracellular matrix (ECM) has long been viewed primarily as an organized network of solid-phase ligands for integrin receptors. During degenerative processes, such as osteoarthritis, the ECM undergoes deterioration, resulting in its remodeling and in the release of some of its components. Matrilin-3 (MATN3) is an almost cartilage specific, pericellular protein acting in the assembly of the ECM of chondrocytes. In the past, MATN3 was found required for cartilage homeostasis, but also involved in osteoarthritis-related pro-catabolic functions. Here, to better understand the pathological and physiological functions of MATN3, its concentration as a circulating protein in articular fluids of human osteoarthritic patients was determined and its functions as a recombinant protein produced in human cells were investigated with particular emphasis on the physical state under which it is presented to chondrocytes. MATN3 down-regulated cartilage extracellular matrix (ECM) synthesis and up-regulated catabolism when administered as a soluble protein. When artificially immobilized, however, MATN3 induced chondrocyte adhesion via a α5β1 integrin-dependent mechanism, AKT activation and favored survival and ECM synthesis. Furthermore, MATN3 bound directly to isolated α5β1 integrin in vitro. TGFβ1 stimulation of chondrocytes allowed integration of exogenous MATN3 into their ECM and ECM-integrated MATN3 induced AKT phosphorylation and improved ECM synthesis and accumulation. In conclusion, the integration of MATN3 to the pericellular matrix of chondrocytes critically determines the direction toward which MATN3 regulates cartilage metabolism. These data explain how MATN3 plays either beneficial or detrimental functions in cartilage and highlight the important role played by the physical state of ECM molecules.  相似文献   

12.
Fibroblast-like cells in the synovial lining (type B lining cells), stroma and pannus tissue are targeted by many signals, such as the following: ligands binding to cell surface receptors; lipid soluble, small molecular weight mediators (eg nitric oxide [NO], prostaglandins, carbon monoxide); extracellular matrix (ECM)-cell interactions; and direct cell-cell contacts, including gap junctional intercellular communication. Joints are subjected to cyclic mechanical loading and shear forces. Adherence and mechanical forces affect fibroblasts via the ECM (including the hyaluronan fluid phase matrix) and the pericellular matrix (eg extracellular matrix metalloproteinase inducer [EMMPRIN]) matrices, thus modulating fibroblast migration, adherence, proliferation, programmed cell death (including anoikis), synthesis or degradation of ECM, and production of various cytokines and other mediators [1]. Aggressive, transformed or transfected mesenchymal cells containing proto-oncogenes can act in the absence of lymphocytes, but whether these cells represent regressed fibroblasts, chondrocytes or bone marrow stem cells is unclear.  相似文献   

13.
Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman–Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.  相似文献   

14.
Experimental studies suggest that the magnitude of chondrocyte deformation is much smaller than expected based on the material properties of extracellular matrix (ECM) and cells, and that this result could be explained by a structural unit, the chondron, that is thought to protect chondrocytes from large deformations in situ. We extended an existing numerical model of chondrocyte, ECM and pericellular matrix (PCM) to include depth-dependent structural information. Our results suggest that superficial zone chondrocytes, which lack a pericellular capsule (PC), are relatively stiff, and therefore are protected from excessive deformations, whereas middle and deep zone chondrocytes are softer but are protected by the PC that limits cell deformations in these regions. We conclude that cell deformations sensitively depend on the immediate structural environment of the PCM in a depth-dependent manner, and that the functional stiffness of chondrocytes in situ is much larger than experiments on isolated cells would suggest.  相似文献   

15.
A phenomenological mixture model is presented for interactions between biosynthesis of extracellular matrix (ECM) constituents and ECM linking in a scaffold seeded with chondrocytes. A system of three ordinary differential equations for average apparent densities of unlinked ECM, linked ECM and scaffold is developed along with associated initial conditions for scaffold material properties. Equations for unlinked ECM synthesis and ECM linking include an inhibitory mechanism where associated rates decrease as unlinked ECM concentration in the interstitial fluid increases. Linking rates are proposed to depend on average porosity in the evolving tissue construct. The resulting initial value problem contains nine independent parameters that account for scaffold biomaterial properties and interacting mechanisms in the engineered system. Effects of parameter variations on model variables are analyzed relative to a baseline case with emphasis on the evolution of solid phase apparent density, which is often correlated with the compressive elastic modulus of the tissue construct. The new model provides an additional quantitative framework for assessing and optimizing the design of engineered cell-scaffold systems and guiding strategies for articular cartilage tissue engineering.  相似文献   

16.
The goal of this study was to examine the effects of mechanical compression on chondrocyte biosynthesis of extracellular matrix (ECM) components during culture in a new alginate disk culture system. Specifically, we have examined chondrocyte biosynthesis rates, and the structure of aggrecan core protein species present in the cell-associated matrix (CM), in the further removed matrix (FRM) and in the surrounding culture medium. In this alginate disk culture system, chondrocytes can be subjected to mechanical deformations similar to those experienced in vivo. Our results show that over an 8-week culture period, chondrocytes synthesize a functional ECM and can respond to mechanical forces similarly to chondrocytes maintained in native cartilage. In the alginate disk system, static compression was shown to decrease and dynamic compression to increase synthesis of aggrecan of bovine chondrocytes. Western blot analysis of the core proteins of aggrecan molecules identified a number of different species that were present in different relative amounts in the CM, FRM, and medium. Over 21 days of culture, the predominant form of aggrecan found in the ECM was a full-length link-stabilized species. In addition, our data show that the application of 40 h of static compression caused an increase in the proportion of newly synthesized aggrecan molecules released into the medium. However, this was not accompanied by a significant change in the size and composition of aggrecan and aggrecan fragments in the different compartments, suggesting that mechanical compression did not alter the catabolic pathways. Together, these data show that chondrocyte function is maintained in an alginate disk culture system and that this culture system is a useful model to examine chondrocyte ECM assembly and some aspects of catabolism normally found in vivo.  相似文献   

17.
Guilak F 《Biorheology》2000,37(1-2):27-44
Chondrocytes in articular cartilage utilize mechanical signals in conjunction with other environmental factors to regulate their metabolic activity. However, the sequence of biomechanical and biochemical events involved in the process of mechanical signal transduction has not been fully deciphered. A fundamental step in determining the role of various factors in regulating chondrocyte activity is to characterize accurately the biophysical environment within the tissue under physiological conditions of mechanical loading. Microscopic imaging studies have revealed that chondrocytes as well as their nuclei undergo shape and volume changes in a coordinated manner with deformation of the tissue matrix. Through micromechanical experiments, it has been shown that the chondrocyte behaves as a viscoelastic solid material with a mechanical stiffness that is several orders of magnitude lower than that of the cartilage extracellular matrix. These properties seem to be due to the structure of the chondrocyte cytoskeleton, and in part, the viscoelastic properties of the cell nucleus. The mechanical properties of the pericellular matrix that immediately surrounds the chondrocyte significantly differ from those of the chondrocyte and the extracellular matrix, suggesting that the pericellular matrix plays an important role in defining the mechanical environment of the chondrocyte. These experimentally measured values for chondrocyte and cartilage mechanical properties have been used in combination with theoretical constitutive modeling of the chondrocyte within articular cartilage to predict the non-uniform and time-varying stress-strain and fluid flow environment of the cell. The ultimate goal of these studies has been to elucidate the sequence of biomechanical and biochemical events through which mechanical stress influences chondrocyte activity in both health and in disease.  相似文献   

18.
The development of advanced materials that facilitate hyaline cartilage formation and regeneration in aging populations is imperative. Critical to the success of this endeavor is the optimization of ECM production from clinically relevant cells. However, much of the current literature focuses on the investigation of primary bovine chondrocytes from young calves, which differ significantly than osteoarthritic cells from human sources. This study examines the levels of extracellular matrix (ECM) production using various levels of type I collagen and hyaluronic acid in poly(ethylene glycol) dimethacrylate (PEGDM) hydrogels in total knee arthroplasties, compared with the results from bovine chondrocytes. The addition of type 1 collagen in both the presence and absence of low levels of hyaluronic acid increased ECM production and/or retention in scaffolds containing either bovine or human chondrocytes. These findings are supported consistently with colorimetric quantification, whole mount extracellular matrix staining for both cell types, and histological staining for glycoaminoglycans and collagen of human chondrocyte containing samples. While exhibiting similar trends, the relative ECM productions levels for the primary human chondrocytes are significantly less than the bovine chondrocytes which reinforces the need for additional optimization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号