首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolomics: current technologies and future trends   总被引:12,自引:0,他引:12  
Hollywood K  Brison DR  Goodacre R 《Proteomics》2006,6(17):4716-4723
  相似文献   

2.
Increases in throughput and decreases in costs have facilitated large scale metabolomics studies, the simultaneous measurement of large numbers of biochemical components in biological samples. Initial large scale studies focused on biomarker discovery for disease or disease progression and helped to understand biochemical pathways underlying disease. The first population-based studies that combined metabolomics and genome wide association studies (mGWAS) have increased our understanding of the (genetic) regulation of biochemical conversions. Measurements of metabolites as intermediate phenotypes are a potentially very powerful approach to uncover how genetic variation affects disease susceptibility and progression. However, we still face many hurdles in the interpretation of mGWAS data. Due to the composite nature of many metabolites, single enzymes may affect the levels of multiple metabolites and, conversely, levels of single metabolites may be affected by multiple enzymes. Here, we will provide a global review of the current status of mGWAS. We will specifically discuss the application of prior biological knowledge present in databases to the interpretation of mGWAS results and discuss the potential of mathematical models. As the technology continuously improves to detect metabolites and to measure genetic variation, it is clear that comprehensive systems biology based approaches are required to further our insight in the association between genes, metabolites and disease. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

3.
The emerge of metabolomics within functional genomics has provided a new dimension in the study of biological systems. In regards to the study of agroecosystems, metabolomics enables monitoring of metabolic changes in association with biotic or abiotic agents such as agrochemicals. Focusing on crop protection chemicals, a great effort has been given towards the development of crop protection agents safer for consumers and the environment and more efficient than the existing ones. Within this framework, metabolomics has so far been a valuable tool for high-throughput screening of bioactive substances in order to discover those with high selectivity, unique modes-of-action, and acceptable eco-toxicological/toxicological profiles. Here, applications of metabolomics in the investigation of the modes-of-action and ecotoxicological–toxicological risk assessment of bioactive compounds, mining of biological systems for the discovery of bioactive metabolites, and the risk assessment of genetic modified crops are discussed.  相似文献   

4.
We discovered that serious issues could arise that may complicate interpretation of metabolomic data when identical samples are analyzed at more than one NMR facility, or using slightly different NMR parameters on the same instrument. This is important because cross-center validation metabolomics studies are essential for the reliable application of metabolomics to clinical biomarker discovery. To test the reproducibility of quantified metabolite data at multiple sites, technical replicates of urine samples were assayed by 1D-1H-NMR at the University of Alberta and the University of Michigan. Urine samples were obtained from healthy controls under a standard operating procedure for collection and processing. Subsequent analysis using standard statistical techniques revealed that quantitative data across sites can be achieved, but also that previously unrecognized NMR parameter differences can dramatically and widely perturb results. We present here a confirmed validation of NMR analysis at two sites, and report the range and magnitude that common NMR parameters involved in solvent suppression can have on quantitated metabolomics data. Specifically, saturation power levels greatly influenced peak height intensities in a frequency-dependent manner for a number of metabolites, which markedly impacted the quantification of metabolites. We also investigated other NMR parameters to determine their effects on further quantitative accuracy and precision. Collectively, these findings highlight the importance of and need for consistent use of NMR parameter settings within and across centers in order to generate reliable, reproducible quantified NMR metabolomics data.  相似文献   

5.
6.
The primary objective of this study was to assess metabolomics for its capacity to discern biological variation among 10 full-sib families of a Douglas-fir tree breeding population, replicated on two sites. The differential accumulation of small metabolites in developing xylem was examined through metabolite profiles (139 metabolites common to 181 individual trees) generated by gas chromatography mass spectrometry and a series of statistical analyses that incorporated family, site, and tree growth and quantitative phenotypic wood traits (wood density, microfibril angle, wood chemistry and fiber morphology). Multivariate discriminant, canonical discriminant and factor analyses and broad-sense heritabilities revealed that metabolic and phenotypic traits alike were strongly related to site, while similar associations relating to genetic (family) structure were weak in comparison. Canonical correlation analysis subsequently identified correlations between specific phenotypic traits (i.e. tree growth, fibre morphology and wood chemistry) and metabolic traits (i.e. carbohydrate and lignin biosynthetic metabolites), demonstrating a coherent relationship between genetics, metabolism, environmental and phenotypic expression in wood-forming tissue. The association between cambial metabolites and tree phenotype, as revealed by metabolite profiling, demonstrates the value of metabolomics for systems biology approaches to understanding tree growth and secondary cell wall biosynthesis in plants.  相似文献   

7.
In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling involved pathways using metabolomics this work contributes significantly to the understanding of activated and inducible defences for marine macroalgae.  相似文献   

8.
The field of metabolomics is getting more and more popular and a wide range of different sample preparation procedures are in use by different laboratories. Chemical extraction methods using one or more organic solvents as the extraction agent are the most commonly used approach to extract intracellular metabolites and generate metabolite profiles. Metabolite profiles are the scaffold supporting the biological interpretation in metabolomics. Therefore, we aimed to address the following fundamental question: can we obtain similar metabolomic results and, consequently, reach the same biological interpretation by using different protocols for extraction of intracellular metabolites? We have used four different methods for extraction of intracellular metabolites using four different microbial cell types (Gram negative bacterium, Gram positive bacterium, yeast, and a filamentous fungus). All the quenched samples were pooled together before extraction, and, therefore, they were identical. After extraction and GC?CMS analysis of metabolites, we did not only detect different numbers of compounds depending on the extraction method used and regardless of the cell type tested, but we also obtained distinct metabolite levels for the compounds commonly detected by all methods (P-value?<?0.001). These differences between methods resulted in contradictory biological interpretation regarding the activity of different metabolic pathways. Therefore, our results show that different solvent-based extraction methods can yield significantly different metabolite profiles, which impact substantially in the biological interpretation of metabolomics data. Thus, development of alternative extraction protocols and, most importantly, standardization of sample preparation methods for metabolomics should be seriously pursued by the scientific community.  相似文献   

9.
Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by modern metabolomics techniques are chemically unidentified. The identification of these unknown metabolites is still a demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence, previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report previously undescribed genotype–metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations, metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to metabolomics data from different experimental platforms.  相似文献   

10.
Mass spectrometry-based metabolomics provides a new approach to interrogate mechanistic biochemistry related to natural processes such as health and disease. Physiological and pathological conditions, however, are characterized not only by the identities and concentrations of metabolites present, but also by the location of metabolites within a tissue. Unfortunately, most relevant MS platforms in metabolomics can only measure samples in solution, therefore metabolites are typically extracted by tissue homogenization. Recent developments of imaging-MS technologies, however, have allowed particular metabolites to be spatially localized within biological tissues. In this context, Nanostructure-Initiator Mass Spectrometry (NIMS), a matrix-free technique for surface-based analysis, has proven an alternative approach for tissue imaging of metabolites. Here we review the basic principles of NIMS for tissue imaging and show applications that can complement LC/MS and GC/MS-based metabolomic studies investigating the mechanisms of fundamental biological processes. In addition, the new surface modifications and nanostructured materials herein presented demonstrate the versatility of NIMS surface to expand the range of detectable metabolites.  相似文献   

11.
12.
Metabolomics studies now approach large sample sizes and the health characterization of the study population often include complete blood count (CBC) results. Upon careful interpretation the CBC aids diagnosis and provides insight into the health status of the patient within a clinical setting. Uncovering metabolic signatures associated with parameters of the CBC in apparently healthy individuals may facilitate interpretation of metabolomics studies in general and related to diseases. For this purpose 879 subjects from the population‐based Study of Health in Pomerania (SHIP)‐TREND were included. Using metabolomics data resulting from mass‐spectrometry based measurements in plasma samples associations of specific CBC parameters with metabolites were determined by linear regression models. In total, 118 metabolites significantly associated with at least one of the CBC parameters. Strongest associations were observed with metabolites of heme degradation and energy production/consumption. Inverse association seen with mean corpuscular volume and mean corpuscular haemoglobin comprised metabolites potentially related to kidney function. The presently identified metabolic signatures are likely derived from the general function and formation/elimination of blood cells. The wealth of associated metabolites strongly argues to consider CBC in the interpretation of metabolomics studies, in particular if mutual effects on those parameters by the disease of interest are known.  相似文献   

13.
Microbial metabolomics has been seriously limited by our inability to perform a reliable separation of intra- and extracellular metabolites with efficient quenching of cell metabolism. Microbial cells are sensitive to most (if not all) quenching agents developed to date, resulting in leakage of intracellular metabolites to the extracellular medium during quenching. Therefore, as yet we are unable to obtain an accurate concentration of intracellular metabolites from microbial cell cultures. However, knowledge of the in vivo concentrations of intermediary metabolites is of fundamental importance for the characterization of microbial metabolism so as to integrate meaningful metabolomics data with other levels of functional genomics analysis. In this article, we report a novel and robust quenching method for microbial cell cultures based on cold glycerol-saline solution as the quenching agent that prevents significant leakage of intracellular metabolites and, therefore, permits more accurate measurement of intracellular metabolite concentrations in microbial cells.  相似文献   

14.
Tang J 《Current Genomics》2011,12(6):391-403
Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their "omics" platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology.  相似文献   

15.
All published metabolomics studies investigate changes in either absolute or relative quantities of metabolites. However, blood plasma, one of the most commonly studied biofluids for metabolomics applications, is a complex, heterogeneous mixture of lipoproteins, proteins, small organic molecules and ions which together undergo a variety of possible molecular interactions including metal complexation, chemical exchange processes, micellular compartmentation of metabolites, enzyme-mediated biotransformations and small-molecule-macromolecule binding. In particular, many low molecular weight (MW) compounds (including drugs) can exist both ‘free’ in solution and bound to proteins or within organised aggregates of macromolecules. To study the effects of e.g. disease on these interactions we suggest that new approaches are needed. We have developed a technique termed ‘interactive metabolomics’ or i-metabolomics. i-metabolomics can be defined as: “The study of interactions between low MW biochemicals and macromolecules in heterogeneous biosamples such as blood plasma, without pre-selection of the components of interest”. Standard 1D NMR experiments commonly used in metabolomics allow metabolite concentration differences between samples to be investigated because the intensity of each peak depends on the concentration of the compound in question. On the other hand, the instrument can be set-up to measure molecular interactions by monitoring the diffusion coefficients of molecules. According to the Stokes–Einstein equation, the diffusion coefficient of a molecule is inversely proportional to its effective size, as represented by the hydrodynamic radius. Therefore, when low MW compounds are non-covalently bound to proteins, the observed diffusion coefficient for the compound will be intermediate between those of its free and bound forms. By measuring diffusion by NMR, the degree of protein binding can be estimated for either low MW endogenous biochemicals or xenobiotics. This type of experiment is referred to as either Diffusion-Ordered Spectroscopy (DOSY) or Diffusion-Edited Spectroscopy, depending on the type of post-acquisition data processing applied to the spectra. Results presented in this paper demonstrate approaches for the non-selective modelling of metabolite-macromolecule interactions (i-metabolomics), whilst additionally highlighting some of the all too frequently ignored issues associated with interpretation of data derived from profiling of blood plasma.  相似文献   

16.
One of the new expanding areas in functional genomics is metabolomics: measuring the metabolome of an organism. Data being generated in metabolomics studies are very diverse in nature depending on the design underlying the experiment. Traditionally, variation in measurements is conceptually broken down in systematic variation and noise where the latter contains, e.g. technical variation. There is increasing evidence that this distinction does not hold (or is too simple) for metabolomics data. A more useful distinction is in terms of informative and non-informative variation where informative relates to the problem being studied. In most common methods for analyzing metabolomics (or any other high-dimensional x-omics) data this distinction is ignored thereby severely hampering the results of the analysis. This leads to poorly interpretable models and may even obscure the relevant biological information. We developed a framework from first data analysis principles by explicitly formulating the problem of analyzing metabolomics data in terms of informative and non-informative parts. This framework allows for flexible interactions with the biologists involved in formulating prior knowledge of underlying structures. The basic idea is that the informative parts of the complex metabolomics data are approximated by simple components with a biological meaning, e.g. in terms of metabolic pathways or their regulation. Hence, we termed the framework 'simplivariate models' which constitutes a new way of looking at metabolomics data. The framework is given in its full generality and exemplified with two methods, IDR analysis and plaid modeling, that fit into the framework. Using this strategy of 'divide and conquer', we show that meaningful simplivariate models can be obtained using a real-life microbial metabolomics data set. For instance, one of the simple components contained all the measured intermediates of the Krebs cycle of E. coli. Moreover, these simplivariate models were able to uncover regulatory mechanisms present in the phenylalanine biosynthesis route of E. coli.  相似文献   

17.

All published metabolomics studies investigate changes in either absolute or relative quantities of metabolites. However, blood plasma, one of the most commonly studied biofluids for metabolomics applications, is a complex, heterogeneous mixture of lipoproteins, proteins, small organic molecules and ions which together undergo a variety of possible molecular interactions including metal complexation, chemical exchange processes, micellular compartmentation of metabolites, enzyme-mediated biotransformations and small-molecule-macromolecule binding. In particular, many low molecular weight (MW) compounds (including drugs) can exist both ‘free’ in solution and bound to proteins or within organised aggregates of macromolecules. To study the effects of e.g. disease on these interactions we suggest that new approaches are needed. We have developed a technique termed ‘interactive metabolomics’ or i-metabolomics. i-metabolomics can be defined as: “The study of interactions between low MW biochemicals and macromolecules in heterogeneous biosamples such as blood plasma, without pre-selection of the components of interest”. Standard 1D NMR experiments commonly used in metabolomics allow metabolite concentration differences between samples to be investigated because the intensity of each peak depends on the concentration of the compound in question. On the other hand, the instrument can be set-up to measure molecular interactions by monitoring the diffusion coefficients of molecules. According to the Stokes–Einstein equation, the diffusion coefficient of a molecule is inversely proportional to its effective size, as represented by the hydrodynamic radius. Therefore, when low MW compounds are non-covalently bound to proteins, the observed diffusion coefficient for the compound will be intermediate between those of its free and bound forms. By measuring diffusion by NMR, the degree of protein binding can be estimated for either low MW endogenous biochemicals or xenobiotics. This type of experiment is referred to as either Diffusion-Ordered Spectroscopy (DOSY) or Diffusion-Edited Spectroscopy, depending on the type of post-acquisition data processing applied to the spectra. Results presented in this paper demonstrate approaches for the non-selective modelling of metabolite-macromolecule interactions (i-metabolomics), whilst additionally highlighting some of the all too frequently ignored issues associated with interpretation of data derived from profiling of blood plasma.

  相似文献   

18.
Metabolomics is emerging as a powerful tool for studying metabolic processes, identifying crucial biomarkers responsible for metabolic characteristics and revealing metabolic mechanisms, which construct the content of discovery metabolomics. The crucial biomarkers can be used to reprogram a metabolome, leading to an aimed metabolic strategy to cope with alteration of internal and external environments, naming reprogramming metabolomics here. The striking feature on the similarity of the basic metabolic pathways and components among vastly differentspeciesmakesthe reprogrammingmetabolomics possible when the engineered metabolites play biological roles in cellular activity as a substrate of enzymes and a regulator to other molecules including proteins. The reprogramming metabolomics approach can be used to clarify metabolic mechanisms of responding to changed internal and external environmental factors and to establish a framework to develop targeted tools for dealing with the changes such as controlling and/or preventing infection with pathogens and enhancing host immunity against pathogens. This review introduces the current state and trends of discovery metabolomics and reprogramming metabolomics and highlights the importance of reprogramming metabolomics.  相似文献   

19.
In functional genomics it is more rule than exception that experimental designs are used to generate the data. The samples of the resulting data sets are thus organized according to this design and for each sample many biochemical compounds are measured, e.g. typically thousands of gene-expressions or hundreds of metabolites. This results in high-dimensional data sets with an underlying experimental design. Several methods have recently become available for analyzing such data while utilizing the underlying design. We review these methods by putting them in a unifying and general framework to facilitate understanding the (dis-)similarities between the methods. The biological question dictates which method to use and the framework allows for building new methods to accommodate a range of such biological questions. The framework is built on well known fixed-effect ANOVA models and subsequent dimension reduction. We present the framework both in matrix algebra as well as in more insightful geometrical terms. We show the workings of the different special cases of our framework with a real-life metabolomics example from nutritional research and a gene-expression example from the field of virology.  相似文献   

20.
微生物代谢组学是系统生物学的重要组成部分,其与基因组学、转录组学和蛋白质组学相互补充,近年来受到越来越多人的重视。其主要对细胞生长或生长周期某一时刻细胞内外所有低分子量代谢物进行定性和定量分析,直接反映了细胞的生理状态,对理解细胞功能十分重要。由于代谢物的复杂性,研究者需根据不同的目的及对象选择合适的分析方法。对微生物代谢组学近年来的研究方法进行综述,包括样品处理、分析手段、数据分析,并讨论了微生物代谢组学在工业中的应用及所面临的挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号