首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
In Alzheimer disease amyloid-β (Aβ) peptides derived from the amyloid precursor protein (APP) accumulate in the brain. Cleavage of APP by the β-secretase BACE1 is the rate-limiting step in the production of Aβ. We have reported previously that the cellular prion protein (PrP(C)) inhibited the action of BACE1 toward human wild type APP (APP(WT)) in cellular models and that the levels of endogenous murine Aβ were significantly increased in PrP(C)-null mouse brain. Here we investigated the molecular and cellular mechanisms underlying this observation. PrP(C) interacted directly with the prodomain of the immature Golgi-localized form of BACE1. This interaction decreased BACE1 at the cell surface and in endosomes where it preferentially cleaves APP(WT) but increased it in the Golgi where it preferentially cleaves APP with the Swedish mutation (APP(Swe)). In transgenic mice expressing human APP with the Swedish and Indiana familial mutations (APP(Swe,Ind)), PrP(C) deletion had no influence on APP proteolytic processing, Aβ plaque deposition, or levels of soluble Aβ or Aβ oligomers. In cells, although PrP(C) inhibited the action of BACE1 on APP(WT), it did not inhibit BACE1 activity toward APP(Swe). The differential subcellular location of the BACE1 cleavage of APP(Swe) relative to APP(WT) provides an explanation for the failure of PrP(C) deletion to affect Aβ accumulation in APP(Swe,Ind) mice. Thus, although PrP(C) exerts no control on cleavage of APP(Swe) by BACE1, it has a profound influence on the cleavage of APP(WT), suggesting that PrP(C) may be a key protective player against sporadic Alzheimer disease.  相似文献   

2.
The Swedish mutation within the amyloid precursor protein (APP) causes early‐onset Alzheimer’s disease due to increased cleavage of APP by BACE1. While β‐secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild‐type APP occurs mainly in endocytic compartments. However, we show that liberation of Aβ from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall β‐secretase cleaved soluble APP released from APPswe secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Aβ secretion. We point out that α‐secretase activity‐mediated conversion of C99 to C83 is the main cause of this Aβ reduction. Furthermore, we demonstrate that α‐secretase cleavage of C99 even contributes to the reduction of Aβ secretion of internalization deficient wild‐type APP. Therefore, inhibition of α‐secretase cleavage increased Aβ secretion through diminished conversion of C99 to C83 in APP695, APP695swe or C99 expressing cells.  相似文献   

3.
Amyloid-β peptide (Aβ), a putatively causative agent of Alzheimer’s disease (AD), is proteolytically derived from β-amyloid precursor protein (APP). Here we describe cellular assays to detect the activity of the key protease β-site of APP cleaving enzyme 1 (BACE1) based on an artificial reporter construct containing the BACE1 cleavage site of APP. These methods allow identification of inhibitors and indirect modulators of BACE1. In primary neuronal cultures transfected with human APP constructs (huAPP), Aβ production was modified by BACE1 inhibitors similarly to the production of endogenous murine Aβ in wild-type cells and to that of different transgenic neurons. To further improve the assay, we substituted the extracellular domain of APP by secreted alkaline phosphatase (SEAP). SEAP was easily quantified in the cell culture supernatants after cleavage of SEAP-APP by BACE1 or α-secretases. To render the assay specific for BACE1, the α-secretase cleavage site of SEAP-APP was eliminated either by site-directed mutagenesis or by substituting the transmembrane part of APP by the membrane domain of the erythropoietin receptor (EpoR). The pharmacology of these constructs was characterized in detail in HEK293 cells (human embryonic kidney cell line), and the SEAP-APP-EpoR construct was also introduced into primary murine neurons and there allowed specific measurement of BACE1 activity.  相似文献   

4.
The proteolytic processing of amyloid β precursor protein (APP) has long been studied because of its association with the pathology of Alzheimer's disease (AD). The ectodomain of APP is shed by α- or β-secretase cleavage. The remaining membrane bound stub can then undergo regulated intramembrane proteolysis (RIP) by γ-secretase. This cleavage can release amyloid β (Aβ) from the stub left by β-secretase cleavage but also releases the APP intracellular domain (AICD) after α- or β-secretase cleavage. The physiological functions of this proteolytic processing are not well understood. We compare the proteolytic processing of APP to the ligand-dependent RIP of Notch. In this review, we discuss recent evidence suggesting that TAG1 is a functional ligand for APP. The interaction between TAG1 and APP triggers γ-secretase-dependent release of AICD. TAG1, APP and Fe65 colocalise in the neurogenic ventricular zone and in fetal neural progenitor cells in vitro. Experiments in TAG1, APP and Fe65 null mice as well as TAG1 and APP double-null mice demonstrate that TAG1 induces a γ-secretase- and Fe65-dependent suppression of neurogenesis.  相似文献   

5.
《朊病毒》2013,7(3):217-222
Alzheimer disease (AD) is characterized by the amyloidogenic processing of the amyloid precursor protein (APP), culminating in the accumulation of amyloid-β peptides in the brain. The enzymatic action of the β-secretase, BACE1 is the rate-limiting step in this amyloidogenic processing of APP. BACE1 cleavage of wild-type APP (APPWT) is inhibited by the cellular prion protein (PrPC). Our recent study has revealed the molecular and cellular mechanisms behind this observation by showing that PrPC directly interacts with the pro-domain of BACE1 in the trans-Golgi network (TGN), decreasing the amount of BACE1 at the cell surface and in endosomes where it cleaves APPWT, while increasing BACE1 in the TGN where it preferentially cleaves APP with the Swedish mutation (APPSwe). PrPC deletion in transgenic mice expressing the Swedish and Indiana familial mutations (APPSwe,Ind) failed to affect amyloid-β accumulation, which is explained by the differential subcellular sites of action of BACE1 toward APPWT and APPSwe. This, together with our observation that PrPC is reduced in sporadic but not familial AD brain, suggests that PrPC plays a key protective role against sporadic AD. It also highlights the need for an APPWT transgenic mouse model to understand the molecular and cellular mechanisms underlying sporadic AD.  相似文献   

6.
Alzheimer's disease (AD) is the most common form of dementia, however incurable so far. It is widely accepted that aggregated amyloid β (Aβ) peptides play a crucial role for the pathogenesis of AD, as they cause neurotoxicity and deposit as so-called Aβ plaques in AD patient brains. Aβ peptides derive from the amyloid precursor protein (APP) upon consecutive cleavage at the β- and γ-secretase site. Hence, mutations in the APP gene are often associated with autosomal dominant inherited AD. Almost thirty years ago, two mutations at the β-secretase site were observed in two Swedish families (termed Swedish APP (APPswe) mutations), which led to early-onset AD. Consequently, APPswe was established in almost every common AD mouse model, as it contributes to early Aβ plaque formation and cognitive impairments. Analyzing these APPswe-based mouse models, the aspartyl protease BACE1 has been evolving as the prominent β-secretase responsible for Aβ release in AD and as the most important therapeutic target for AD treatment. However, with respect to β-secretase processing, the very rare occurring APPswe variant substantially differs from wild-type APP. BACE1 dominates APPswe processing resulting in the release of Aβ1-x, whereas N-terminally truncated Aβ forms are scarcely generated. However, these N-terminally truncated Aβ species such as Aβ2-x, Aβ3-x and Aβ4-x are elevated in AD patient brains and exhibit an increased potential to aggregate compared to Aβ1-x peptides. Proteases such as meprin β, cathepsin B and ADAMTS4 were identified as alternative β-secretases being capable of generating these N-terminally truncated Aβ species from wild-type APP. However, neither meprin β nor cathepsin B are capable of generating N-terminally truncated Aβ peptides from APPswe. Hence, the role of BACE1 for the Aβ formation during AD might be overrepresented through the excessive use of APPswe mouse models. In this review we critically discuss the consideration of BACE1 as the most promising therapeutic target. Shifting the focus of AD research towards alternative β secretases might unveil promising alternatives to BACE1 inhibitors constantly failing in clinical trials due to ineffectiveness and harmful side effects.  相似文献   

7.
目的:探讨缺氧对稳定表达人淀粉样前体蛋白的HEK293细胞(HEK293-APP695)存活及相关蛋白表达的影响,为深入研究缺氧对阿尔茨海默病的调节作用提供稳定的细胞模型。方法:利用缺氧手套箱(0.3% O2)处理HEK293-APP695细胞,CCK-8法检测细胞的存活情况;Western blot检测缺氧条件下阿尔茨海默病(AD)相关蛋白APP、APP-CTFs和BACE1的表达变化。结果:缺氧处理后,HEK293-APP695细胞的存活率明显下降,APP表达降低,其剪切体APP-CTFs表达升高。结论:缺氧导致APP剪切的增多,抑制细胞的存活,提示缺氧可能通过影响BACE1的活性在AD的发病进程中起重要的调节作用。  相似文献   

8.
β-Amyloid (Aβ) peptides are generated from the successive proteolytic processing of the amyloid precursor protein (APP) by the β-APP cleaving enzyme (BACE or β-secretase) and the γ-secretase complex. Initial cleavage of APP by BACE leads into the amyloidogenic pathway, causing or exacerbating Alzheimer's disease. Therefore, their intracellular traffic can determine how easily and frequently BACE has access to and cleaves APP. Here, we have used polarized Madin-Darby canine kidney (MDCK) cells stably expressing APP and BACE to examine the regulation of their polarized trafficking by retromer, a protein complex previously implicated in their endosome-to-Golgi transport. Our data show that retromer interacts with BACE and regulates its postendocytic sorting in polarized MDCK cells. Depleting retromer, inhibiting retromer function, or preventing BACE interaction with retromer, alters trafficking of BACE, which thereby increases its localization in the early endocytic compartment. As a result, this slows endocytosis of apically localized BACE, promoting its recycling and apical-to-basolateral transcytosis, which increases APP/BACE interaction and subsequent cleavage of APP toward generation and secretion of Aβ peptides.  相似文献   

9.
Cholesterol accumulation in Niemann-Pick type C disease (NPC) causes increased levels of the amyloid-precursor-protein C-terminal fragments (APP-CTFs) and intracellular amyloid-β peptide (Aβ), the two central molecules in Alzheimer's disease (AD) pathogenesis. We previously reported that cholesterol accumulation in NPC-cells leads to cholesterol-dependent increased APP processing by β-secretase (BACE1) and decreased APP expression at the cell surface (Malnar et al. Biochim Biophys Acta. 1802 (2010) 682-691.). We hypothesized that increased formation of APP-CTFs and Aβ in NPC disease is due to cholesterol-mediated altered endocytic trafficking of APP and/or BACE1. Here, we show that APP endocytosis is prerequisite for enhanced Aβ levels in NPC-cells. Moreover, we observed that NPC cells show cholesterol dependent sequestration and colocalization of APP and BACE1 within enlarged early/recycling endosomes which can lead to increased β-secretase processing of APP. We demonstrated that increased endocytic localization of APP in NPC-cells is likely due to both its increased internalization and its decreased recycling to the cell surface. Our findings suggest that increased cholesterol levels, such as in NPC disease and sporadic AD, may be the upstream effector that drives amyloidogenic APP processing characteristic for Alzheimer's disease by altering endocytic trafficking of APP and BACE1.  相似文献   

10.
Several lines of evidence implicate lipid raft microdomains in Alzheimer disease-associated β-amyloid peptide (Aβ) production. Notably, targeting β-secretase (β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)) exclusively to lipid rafts by the addition of a glycosylphosphatidylinositol (GPI) anchor to its ectodomain has been reported to elevate Aβ secretion. Paradoxically, Aβ secretion is not reduced by the expression of non-raft resident S-palmitoylation-deficient BACE1 (BACE1-4C/A (C474A/C478A/C482A/C485A)). We addressed this apparent discrepancy in raft microdomain-associated BACE1 processing of APP in this study. As previously reported, we found that expression of BACE1-GPI elevated Aβ secretion as compared with wild-type BACE1 (WTBACE1) or BACE1-4C/A. However, this increase occurred without any difference in the levels of APP ectodomain released following BACE1 cleavage (soluble APPβ), arguing against an overall increase in BACE1 processing of APP per se. Further analysis revealed that WTBACE1 cleaves APP at β- and β'-sites, generating +1 and +11 β-C-terminal fragments and secreting intact as well as N-terminally truncated Aβ. In contrast, three different BACE1-GPI chimeras preferentially cleaved APP at the β-site, mainly generating +1 β-C-terminal fragment and secreting intact Aβ. As a consequence, cells expressing BACE1-GPI secreted relatively higher levels of intact Aβ without an increase in BACE1 processing of APP. Markedly reduced cleavage at β'-site exhibited by BACE1-GPI was cell type-independent and insensitive to subcellular localization of APP or the pathogenic KM/NL mutant. We conclude that the apparent elevation in Aβ secretion by BACE1-GPI is mainly attributed to preferential cleavage at the β-site and failure to detect +11 Aβ species secreted by cells expressing WTBACE1.  相似文献   

11.
Retinoic acid stimulates α-secretase processing of amyloid precursor protein (APP) and decreases β-secretase cleavage that leads to amyloid-β formation. Here, we investigated the effect of retinoic acid on the two putative α-secretases, the disintegrin metalloproteinases ADAM10 and TACE, and the β-site cleaving enzyme BACE1, in human neuroblastoma SH-SY5Y cells. Western blot analysis showed that exposure to retinoic acid resulted in significantly increased levels of ADAM10 and TACE, suggesting that regulation of α-secretases causes the effects on APP processing. The presence of the phosphatidylinositol 3-kinase inhibitor LY 294002 selectively reduced the effect on ADAM10 protein levels but not on ADAM10 mRNA levels as determined by RT-PCR. On the other hand, the effect on TACE was shown to be dependent on protein kinase C, since it was completely blocked in the presence of the inhibitor bisindolylmaleimide XI. Our data indicate that different signalling pathways are involved in retinoic acid-induced up-regulation of the secretases.  相似文献   

12.
Zhang M  Deng Y  Luo Y  Zhang S  Zou H  Cai F  Wada K  Song W 《Journal of neurochemistry》2012,120(6):1129-1138
Deposition of amyloid β protein (Aβ) in the brain is the hallmark of Alzheimer's disease (AD) pathogenesis. Beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the β-secretase in vivo essential for generation of Aβ. Previously we demonstrated that BACE1 is ubiquitinated and the degradation of BACE1 is mediated by the ubiquitin-proteasome pathway (UPP). However the mechanism underlying regulation of BACE1 degradation by UPP remains elusive. Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme highly specific to neuron, catalyzing the hydrolysis of ubiquitin conjugates from ubiquitinated substrates. UCHL1 regulates ubiquitin-dependent protein degradation. However, whether UCHL1 is particularly involved in the proteasomal degradation of BACE1 and what is the role of UCHL1 in AD pathogenesis remain elusive. To investigate the effect of UCHL1 on BACE1 degradation, HUCH cells, a UCHL1 stably over-expressed HEK293 cell line, was established. We found that inhibition of UCHL1 significantly increased BACE1 protein level in a time-dependent manner. Half life of BACE1 was reduced in HUCH cells compared with HEK. Over-expression of UCHL1 decreased APP C-terminal fragment C99 and Aβ levels in HUCH cells. Moreover, disruption of Uchl1 gene significantly elevated levels of endogenous BACE1, C99 and Aβ in the Uchl1-null gad mice. These results demonstrated that UCHL1 accelerates BACE1 degradation and affects APP processing and Aβ production. This study suggests that potentiation of UCHL1 might be able to reduce the level of BACE1 and Aβ in brain, which makes it a novel target for AD drug development.  相似文献   

13.
《Autophagy》2013,9(12):1842-1844
Alzheimer disease (AD) is sometimes referred to as type III diabetes because of the shared risk factors for the two disorders. Insulin resistance, one of the major components of type II diabetes mellitus (T2DM), is a known risk factor for AD. Insulin resistance increases amyloid-β peptide (Aβ) generation, but the exact mechanism underlying the linkage of insulin resistance to increased Aβ generation in the brain is unknown. In this study, we investigated the effect of insulin resistance on amyloid β (A4) precursor protein (APP) processing in mice fed a high-fat diet (HFD), and diabetic db/db mice. We found that insulin resistance promotes Aβ generation in the brain via altered insulin signal transduction, increased BACE1/β-secretase and γ-secretase activities, and accumulation of autophagosomes. Using an in vitro model of insulin resistance, we found that defects in insulin signal transduction affect autophagic flux by inhibiting the mechanistic target of rapamycin (MTOR) pathway. The insulin resistance-induced autophagosome accumulation resulted in alteration of APP processing through enrichment of secretase proteins in autophagosomes. We speculate that the insulin resistance that underlies the pathogenesis of T2DM might alter APP processing through autophagy activation, which might be involved in the pathogenesis of AD. Therefore, we propose that insulin resistance-induced autophagosome accumulation becomes a potential linker between AD and T2DM.  相似文献   

14.
15.
Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients, are free from the mutation and do not necessarily have overproduction of APP. In addition, the commonly used Swedish mutant APP alters APP cleavage. Therefore, testing Abeta-lowering strategies in transgenic mice may not be optimal. In this study, we investigated the impact of BACE1 inhibition in non-transgenic mice with physiologically relevant APP expression. Existing Abeta ELISAs are either relatively insensitive to mouse Abeta or not specific to full-length Abeta. A newly developed ELISA detected a significant reduction of full-length soluble Abeta 1-40 in mice with the BACE1 homozygous gene deletion or BACE1 inhibitor treatment, while the level of x-40 Abeta was moderately reduced due to detection of non-full-length Abeta and compensatory activation of alpha-secretase. These results confirmed the feasibility of Abeta reduction through BACE1 inhibition under physiological conditions. Studies using our new ELISA in non-transgenic mice provide more accurate evaluation of Abeta-reducing strategies than was previously feasible.  相似文献   

16.
17.
Amyloid‐β (Aβ)‐peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β‐site APP‐cleaving enzyme (BACE). Using live‐cell imaging of APP and BACE labeled with pH‐sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α‐secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual‐color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.   相似文献   

18.
Our knowledge of the etiology of Alzheimer's disease (AD) has advanced tremendously since the discovery of amyloid beta (Aβ) aggregation in diseased brains. Accumulating evidence suggests that Aβ plays a causative role in AD. The β-secretase enzyme, beta-site APP cleaving enzyme-1 (BACE1), is also implicated in AD pathogenesis, given that BACE1 cleavage of amyloid precursor protein is the initiating step in the formation of Aβ. As a result, BACE1 inhibition has been branded as a potential AD therapy. In this study, we review the identification and basic characteristics of BACE1, as well as the progress in our understanding of BACE1 cell biology, substrates, and phenotypes of BACE1 knockout mice that are informative about the physiological functions of BACE1 beyond amyloid precursor protein cleavage. These data are crucial for predicting potential mechanism-based toxicity that would arise from inhibiting BACE1 for the treatment or prevention of AD.  相似文献   

19.
Several studies suggest that the generation of Aβ is highly dependent on the levels of cholesterol within membranes' detergent-resistant microdomains (DRM). Indeed, the β-amyloid precursor protein (APP) cleaving machinery, namely β- and γ-secretases, has been shown to be present in DRM and its activity depends on membrane cholesterol levels. Counterintuitive to the localization of the cleavage machinery, the substrate, APP, localizes to membranes' detergent-soluble microdomains enriched in phospholipids (PL), indicating that Aβ generation is highly dependent on the capacity of enzyme and substrate to diffuse along the lateral plane of the membrane and therefore on the internal equilibrium of the different lipids of DRM and non-DRM domains. Here, we studied to which extent changes in the content of a main non-DRM lipid might affect the proteolytic processing of APP. As phosphatidylethanolamine (PE) accounts for the majority of PL, we focused on its impact on the regulation of APP proteolysis. In mammalian cells, siRNA-mediated knock-down of PE synthesis resulted in decreased Aβ owing to a dual effect: promoted α-secretase cleavage and decreased γ-secretase processing of APP. In vivo, in Drosophila melanogaster, genetic reduction in PL synthesis results in decreased γ-secretase-dependent cleavage of APP. These results suggest that modulation of the membrane-soluble domains could be a valuable alternative to reduce excessive Aβ generation.  相似文献   

20.
We have previously described a novel artificial NFEV β-secretase (BACE1) cleavage site, which when introduced into the amyloid-β precursor protein (APP), significantly enhances APP cleavage by BACE1 in in vitro and cellular assays. In this study, we describe the identification and characterization of a single chain fragment of variable region (scFv), specific to the EV neo-epitope derived from BACE1 cleavage of the NFEV-containing peptide, and its conversion to IgG1. Both the scFv displayed on phage and EV-IgG1 show exquisite specificity for binding to the EV neoepitope without cross-reactivity to other NFEV containing peptides or WT-APP KMDA cleavage products. EV-IgG1 can detect as little as 0.3 nmol/L of the EV peptide. EV-IgG1 antibody was purified, conjugated with alkaline phosphatase and utilized in various biological assays. In the BACE1 enzymatic assay using NFEV substrate, a BACE1 inhibitor MRK-3 inhibited cleavage with an IC50 of 2.4 nmol/L with excellent reproducibility. In an APP_NFEV stable SH-SY5Y cellular assay, the EC50 for inhibition of EV-Aβ peptide secretion with MRK-3 was 236 nmol/L, consistent with values derived using an EV polyclonal antibody. In an APP_NFEV knock-in mouse model, both Aβ_EV40 and Aβ_EV42 peptides in brain homogenate showed excellent gene dosage dependence. In conclusion, the EV neoepitope specific monoclonal antibody is a novel reagent for BACE1 inhibitor discovery for both in vitro, cellular screening assays and in vivo biochemical studies. The methods described herein are generally applicable to novel synthetic substrates and enzyme targets to enable robust screening platforms for enzyme inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号