首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: The factors involved in the progression from Plasmodium falciparum infection to severe malaria (SM) are still incompletely understood. Altered antibody and cellular immunity against P. falciparum might contribute to increase the risk of developing SM. METHODS: To identify immune responses associated with SM, a sex- and age-matched case-control study was carried out in 134 Mozambican children with SM (cerebral malaria, severe anaemia, acidosis and/or respiratory distress, prostration, hypoglycaemia, multiple seizures) or uncomplicated malaria (UM). IgG and IgM against P. falciparum lysate, merozoite antigens (MSP-119, AMA-1 and EBA-175), a Duffy binding like (DBL)-alpha rosetting domain and antigens on the surface of infected erythrocytes were measured by ELISA or flow cytometry. Plasma concentrations of IL-12p70, IL-2, IFN-gamma, IL-4, IL-5, IL-10, IL-8, IL-6, IL- 1beta, TNF, TNF-beta and TGF-beta1 were measured using fluorescent bead immunoassays. Data was analysed using McNemar's and Signtest. RESULTS: Compared to UM, matched children with SM had reduced levels of IgG against DBLalpha (P < 0.001), IgM against MSP-119 (P = 0.050) and AMA-1 (P = 0.047), TGF-beta1 (P <0.001) and IL-12 (P = 0.039). In addition, levels of IgG against P. falciparum lysate and IL-6 concentrations were increased (P = 0.004 and P = 0.047, respectively). Anti-DBLalpha IgG was the only antibody response associated to reduced parasite densities in a multivariate regression model (P = 0.026). CONCLUSIONS: The lower levels of antibodies found in children with SM compared to children with UM were not attributable to lower exposure to P. falciparum in the SM group. IgM against P. falciparum and specific IgG against a rosetting PfEMP1 domain may play a role in the control of SM, whereas an imbalanced pro-inflammatory cytokine response may exacerbate the severity of infection. A high overlap in symptoms together with a limited sample size of different SM clinical groups reduced the power to identify immunological correlates for particular forms of SM.  相似文献   

2.
Antibody responses directed against the Plasmodium falciparum antigens, total extract, anti-merozoite surface protein-3 (MSP3b) and glutamate-rich protein (Glurp-R0) were studied in 42 children exposed to both Schistosoma haematobium and P. falciparum infections. The association between levels of the anti-malaria IgG subclasses and IgM with host age, sex, schistosome infection intensity and schistosome specific antibodies was studied before chemotherapeutic treatment of schistosome infections. This showed a significant negative association between schistosome infection intensity and levels of IgG1, IgG3, and IgG4 directed against malaria total extract antigen, and a positive association between levels of anti-schistosome soluble egg antigen IgG2, IgG3, and IgG4 and levels of the same subclasses directed against malaria total extract antigens. The effect of treating schistosome infections with praziquantel on malaria specific responses was also studied. This treatment resulted in increases in significant IgG4 levels against MSP3b and IgM against Glurp R0. Treatment also resulted in a significant decrease in IgG4 levels against Glurp R0. Host age, sex or pre-treatment infection intensity was not associated with the magnitude of change in the two IgG4 responses while males showed a significantly higher increase in levels of IgM. The results suggest cross reactivity between schistosome and malaria antigens in this population.  相似文献   

3.
The effect of praziquantel treatment on the age-antibody relationship was studied in 174 children aged between 6 and 17 years from a schistosome endemic area in Zimbabwe. The children were co-infected with Schistosoma mansoni and S. haematobium with infection prevalences of 74% and 53% respectively. Antibody levels for the isotypes IgA, IgE, IgM, IgG1, IgG2, IgG3 and IgG4, directed against soluble egg antigen were measured using an indirect ELISA assay. Treatment resulted in a significant increase in levels of IgG2 and IgG3 while levels of IgA decreased significantly. In untreated children there were significant decreases in levels of IgG4. Treatment also resulted in significant alteration in the age-antibody profiles for the isotypes IgE, IgM, IgG1 and IgG2 in treated children but not in untreated children. The results are discussed in the context of factors believed to give rise to the age-antibody relationship; i.e. age-related exposure patterns, age-related development of acquired immunity, age-related hormonal changes and age-related changes in innate susceptibility to infection.  相似文献   

4.
These studies assess the roles of subpopulations of T lymphocytes in inducing and modulating resistance to Schistosoma mansoni. C57BL/6 mice were depleted in vivo of L3T4+, Lyt-1+, Lyt-2+, IL-2R+ cells, or IL-4 by administration of appropriate mAb. Resistance and various correlative parameters of the immune response were studied in normal, depleted, and congenitally athymic mice. Depletion of T lymphocytes by anti-L3T4 or anti-IL-2R mAb reduced the development and expression of resistance, IgG2a and IgE antibody formation, and delayed type hypersensitivity reactivity against schistosome Ag. Depletion with anti-IL-4 antibody led to profound suppression of IgE-eosinophil-mediated antibody-dependent cell-mediated cytotoxicity and passive cutaneous anaphylaxis responses against the parasite and no effect on IgG2a antibody, Ag-mediated blast transformation, or resistance. Depletion of Lyt-2+ cells produced augmented development and expression of resistance and an increase in the immunological parameters of anti-schistosome reactivity. These studies suggest that protective immunity to S. mansoni in mice, induced by irradiated cercariae, is dependent on L3T4+, IL-2R+ lymphocytes and negatively regulated by Lyt-2+ cells. IL-4 does not appear to be essential for the development of resistance but is essential for the IgE response to the parasite.  相似文献   

5.
The role of the third component of complement (C3) during schistosome infection was investigated using mice deficient in C3. While no effect was observed 8 wk after infection on worm development or liver pathology, Ag-specific Th2-associated cytokine production (IL-13, IL-5, IL-6, and IL-10) was significantly reduced, and IFN-gamma production was enhanced in the absence of C3. IgG1 and IgE, but not IgG2a or IgM, Ab responses were also significantly impaired in infected C3(-/-) mice, suggesting that C3 may play a role in IL-4-mediated Th2 response enhancement during schistosome infection. Furthermore, C3-deficient mice could not effectively clear adult worms after praziquantel (PZQ) treatment and suffered increased morbidity due to the overproduction of proinflammatory mediators following drug administration. However, the ischemic liver damage that normally accompanies PZQ administration in infected wild-type mice was substantially reduced in treated C3-deficient mice, probably due to the absence of dead or dying worms in the livers of these animals. Together these results indicate that C3 enhances Th2 responses during schistosome infection, potentiates PZQ-mediated parasite clearance, and reduces chemotherapy-induced proinflammatory mediator production.  相似文献   

6.
Acquired immunity against helminths is characterised by a complex interplay between the effector Th1 and Th2 immune responses and it slowly manifests with age as a result of cumulative exposure to parasite antigens. Data from experimental models suggest that immunity is also influenced by regulatory T cells (Treg), but as yet studies on Treg in human schistosome infections are limited. This study investigated the relationship between schistosome infection intensity and the two cell populations regulatory T cells (TREG: CD4(+(dim))CD25(+(high))FOXP3(+)CD127(low)), and activated (Tact: CD4(+)CD25(+)FOXP3(-)) T cells in Zimbabweans exposed to Schistosoma haematobium parasites. Participants were partitioned into two age groups, young children (8-13 years) in whom schistosome infection levels were rising to peak and older people (14+ years) with declining infection levels. The relationship between Tact proportions and schistosome infection intensity remained unchanged with age. However Treg proportions rose significantly with increasing infection in the younger age group. In contrast Treg were negatively correlated to infection intensity in the older age group. The relative proportions of regulatory T cells differ significantly between young individuals in whom high infection is associated with an enhanced regulatory phenotype and older infected patients in whom the regulatory response is attenuated. This may influence or reflect different stages of the development of protective schistosome acquired immunity and immunopathogenesis.  相似文献   

7.
In areas of endemic parasite transmission, protective immunity to Plasmodium falciparum malaria is acquired over several years with numerous disease episodes. Acquisition of Abs to parasite-encoded variant surface Ags (VSA) on the infected erythrocyte membrane is important in the development of immunity, as disease-causing parasites appear to be those not controlled by preexisting VSA-specific Abs. In this work we report that VSA expressed by parasites from young Ghanaian children with P. falciparum malaria were commonly and strongly recognized by plasma Abs from healthy children in the same area, whereas recognition of VSA expressed by parasites from older children was weaker and less frequent. Independent of this, parasites isolated from children with severe malaria (cerebral malaria and severe anemia) were better recognized by VSA-specific plasma Abs than parasites obtained from children with nonsevere disease. This was not due to a higher infection multiplicity in younger patients or in patients with severe disease. Our data suggest that acquisition of VSA-specific Ab responses gradually restricts the VSA repertoire that is compatible with parasite survival in the semi-immune host. This appears to limit the risk of severe disease by discriminating against the expression of VSA likely to cause life-threatening complications, such as cerebral malaria and severe anemia. Such VSA seem to be preferred by parasites infecting a nonimmune host, suggesting that VSA expression and switching are not random, and that the VSA expression pattern is modulated by immunity. This opens the possibility of developing morbidity-reducing vaccines targeting a limited subset of common and particularly virulent VSA.  相似文献   

8.
Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in na?ve human volunteers undergoing single (n?=?5) or multiple (n?=?10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only 'adaptive' but also 'innate' lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO(+) CD62L(-) effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ(+)IL-2(+)) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field.  相似文献   

9.
Protection against Plasmodium falciparum malaria is usually considered to be the cumulative product of repeated exposure to parasites, and thus a function of age, in endemic areas. The recent outbreak of malaria in the central highlands of Madagascar gave Philippe Deloron and Claire Chougnet the opportunity to compare the incidence of malaria in children and young adults exposed to malaria for the first time, with that in older adults who spent their childhood in the study area before malaria control was introduced. Protection, as well as immune responses to two major P. falciparum antigens, was not related to age. Individuals older than 40 years were more protected than were younger adults. This increased protection was probably due to immunological memory.  相似文献   

10.
A vaccine is urgently needed to stem the global resurgence of Plasmodium falciparum malaria. Vaccines targeting the erythrocytic stage are often viewed as an anti-disease strategy. By contrast, infection might be completely averted by a vaccine against the liver stage, a pre-erythrocytic stage during which the parasite multiplies 10000-fold within hepatocytes. Sterilizing immunity can be conferred by inoculating humans with irradiated pre-erythrocytic parasites, and a recombinant pre-erythrocytic vaccine partially protects humans from infection. Liver-stage antigen-1, one of a few proteins known to be expressed by liver-stage parasites, holds particular promise as a vaccine. Studies of naturally exposed populations have consistently related immune responses against this antigen to protection.  相似文献   

11.
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite – MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors – ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.  相似文献   

12.
Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components – a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.  相似文献   

13.
Malaria is a vector-borne infectious disease caused by infection with eukaryotic pathogens termed Plasmodium. Epidemiological hallmarks of Plasmodium falciparum malaria are continuous re-infections, over which time the human host may experience several clinical malaria episodes, slow acquisition of partial protection against infection, and its partial decay upon migration away from endemic regions. To overcome the exposure-dependence of naturally acquired immunity and rapidly elicit robust long-term protection are ultimate goals of malaria vaccine development. However, cellular and molecular correlates of naturally acquired immunity against either parasite infection or malarial disease remain elusive. Sero-epidemiological studies consistently suggest that acquired immunity is primarily directed against the asexual blood stages. Here, we review available data on the relationship between immune responses against the Anopheles mosquito-transmitted sporozoite and exo-erythrocytic liver stages and the incidence of malaria. We discuss current limitations and research opportunities, including the identification of additional sporozoite antigens and the use of systematic immune profiling and functional studies in longitudinal cohorts to look for pre-erythrocytic signatures of naturally acquired immunity.  相似文献   

14.
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.  相似文献   

15.
Mutapi F 《Parasitology》2012,139(9):1195-1204
Schistosomiasis is a major human helminth infection endemic in developing countries. Urogenital schistosomiasis, caused by S. haematobium, is the most prevalent human schistosome disease in sub-Saharan Africa. Currently control of schistosome infection is by treatment of infected people with the anthelmintic drug praziquantel, but there are calls for continued efforts to develop a vaccine against the parasites. In order for successful vaccine development, it is necessary to understand the biology and molecular characteristics of the parasite. Ultimately, there is need to understand the nature and dynamics of the relationship between the parasite and the natural host. Thus, my studies have focused on molecular characterization of different parasite stages and integrating this information with quantitative approaches to investigate the nature and development of protective immunity against schistosomes in humans. Proteomics has proved a powerful tool in these studies allowing the proteins expressed by the parasite to be characterized at a molecular and immunological level. In this review, the application of proteomic approaches to understanding the human-schistosome relationship as well as testing specific hypotheses on the nature and development of schistosome-specific immune responses is discussed. The contribution of these approaches to informing schistosome vaccine development is highlighted.  相似文献   

16.
Immunological characteristics were assessed for prospective risk of clinical malaria in a longitudinally followed population in a holoendemic area of Tanzania. Baseline characteristics including crude Plasmodium falciparum extract-specific IgE and IgG; total IgE; and parasitological indices, e.g. number of P. falciparum clones, were investigated among 700 asymptomatic individuals. Cox regression analysis estimated the risk of succumbing to a new clinical episode during a 40 weeks follow up. High anti-P. falciparum IgE levels were associated with reduced risk of acute malaria in all age groups independently of total IgE levels. Statistically significant reduced odds ratio of 0.26 (95% CI, 0.09-0.72, P=0.010) and 0.44 (95% CI, 0.19-0.99, P=0.047) for the two highest fifths, respectively was observed after adjustment for age, sex, total IgE, numbers of parasite clones per infection and HIV-1 seropositivity. In contrast, high levels of malaria specific IgG or total IgE were not associated with reduced risk to succumb to a new clinical episode. A protective effect of asymptomatic multiclonal P. falciparum infections was also confirmed. For the first time, anti-malarial IgE levels in asymptomatic individuals in endemic area are found to be associated with reduced risk for subsequent malaria disease. Specific IgE antibodies may play role in maintaining anti-malarial immunity, or indicate other aspects of immune function relevant for protection against malaria.  相似文献   

17.
Previous studies demonstrated that Plasmodium falciparum strain D10 became highly resistant to the mitochondrial electron transport chain (mtETC) inhibitor atovaquone when the mtETC was decoupled from the pyrimidine biosynthesis pathway by expressing the fumarate-dependent (ubiquinone-independent) yeast dihydroorotate dehydrogenase (yDHODH) in parasites. To investigate the requirement for decoupled mtETC activity in P. falciparum with different genetic backgrounds, we integrated a single copy of the yDHODH gene into the genomes of D10attB, 3D7attB, Dd2attB, and HB3attB strains of the parasite. The yDHODH gene was equally expressed in all of the transgenic lines. All four yDHODH transgenic lines showed strong resistance to atovaquone in standard short-term growth inhibition assays. During longer term growth with atovaquone, D10attB-yDHODH and 3D7attB-yDHODH parasites remained fully resistant, but Dd2attB-yDHODH and HB3attB-yDHODH parasites lost their tolerance to the drug after 3 to 4 days of exposure. No differences were found, however, in growth responses among all of these strains to the Plasmodium-specific DHODH inhibitor DSM1 in either short- or long-term exposures. Thus, DSM1 works well as a selective agent in all parasite lines transfected with the yDHODH gene, whereas atovaquone works for some lines. We found that the ubiquinone analog decylubiquinone substantially reversed the atovaquone inhibition of Dd2attB-yDHODH and HB3attB-yDHODH transgenic parasites during extended growth. Thus, we conclude that there are strain-specific differences in the requirement for mtETC activity among P. falciparum strains, suggesting that, in erythrocytic stages of the parasite, ubiquinone-dependent dehydrogenase activities other than those of DHODH are dispensable in some strains but are essential in others.  相似文献   

18.
The present work demonstrates the expression of receptors for the Fc portion of rodent Ig by the murine parasite Trypanosoma musculi. By using a rosette assay adapted to the parasite morphology and by flow cytometry analysis, three distinct receptors were identified. A receptor binding rabbit or rat polyclonal IgG and mouse monoclonal IgG1, IgG2a, and IgG2b was found on parasites purified from the blood and the peritoneal cavity of infected mice and on parasites maintained in culture conditions. This IgG receptor was degraded by pepsin. A separate receptor, binding only mouse monoclonal IgG3 was observed on cultured parasites. A receptor binding rabbit, rat, and mouse IgM was found on cultured and peritoneal parasites, but not on blood parasites. This receptor did not bind IgG or IgA but it bound mouse and rat IgE as well as IgM. It was degraded by trypsin. IgG and IgM/IgE receptors were co-expressed on single parasites. They were not of host origin but synthesized by trypanosomes as shown by reexpression in vitro after proteolytic degradation. Their expression was variable with the development of trypanosomes both in vitro and in vivo.  相似文献   

19.
IgG4 has been proposed to act as a 'blocking antibody' due to its ability to compete for the same epitopes as IgE thus preventing IgE-dependent allergic responses. IgG4 and IgE are both elevated in helminth infections and strong anti-parasite IgE responses are associated with resistance to infection. We wished to determine the relationship between anti-parasite IgG4 and IgE and Ascaris lumbricoides infection status. We examined anti-parasite responses, including antibody levels to recombinant Ascaris allergen-1A (rABA-1A), a target of serum IgE in endemic populations. Worm burden was indirectly estimated by measuring parasite egg output in a cross-sectional human population (N = 105). Levels of anti-parasite IgG4 and IgE in patients' plasma were quantified by immunoassay. Global anti-parasite antibody responses did not bear any significant relationships with intensity of Ascaris infection. Individuals who had detectable levels of IgE but not IgG4 to rABA-1A (11%) had lower average levels of infection compared with individuals who produced anti-rABA-1A IgG4 (40%) and sero-negative individuals (49%) (P = 0.008). The ratio of IgG4/IgE in rABA-1A responders positively correlated with intensity of infection (P < 0.025). IgG4 levels positively correlated with infection level in younger children (age 4-11) where average levels of infection were increasing (P = 0.038), whereas allergen specific IgE emerged as a correlate of immunity in older children and adults (age 12-36) where infection levels were decreasing (P = 0.048). Therefore, in a gastrointestinal helminth infection, differential regulation of anti-allergen antibody isotypes relate to infection level. Our results are consistent with the concept that IgG4 antibody can block IgE-mediated immunity and therefore allergic processes in humans.  相似文献   

20.
Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the ‘off-target’ effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of molecules used in immunotherapy of allergic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号