首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reverse-mode of the Na(+)/Ca(2+)-exchanger (NCX) mediates Ca(2+)-entry in agonist-stimulated vascular smooth muscle (VSM) and plays a central role in salt-sensitive hypertension. We investigated buffering of Ca(2+)-entry by peripheral mitochondria upon NCX reversal in rat aortic smooth muscle cells (RASMC). [Ca(2+)] was measured in mitochondria ([Ca(2+)](MT)) and the sub-plasmalemmal space ([Ca(2+)](subPM)) with targeted aequorins and in the bulk cytosol ([Ca(2+)](i)) with fura-2. Substitution of extracellular Na(+) by N-methyl-d-glucamine transiently increased [Ca(2+)](MT) ( approximately 2microM) and [Ca(2+)](subPM) ( approximately 1.3microM), which then decreased to sustained plateaus. In contrast, Na(+)-substitution caused a delayed and tonic increase in [Ca(2+)](i) (<100nM). Inhibition of Ca(2+)-uptake by the sarcoplasmic reticulum (SR) (30microM cyclopiazonic acid) or mitochondria (2microM FCCP or 2microM ruthenium red) enhanced the elevation of [Ca(2+)](subPM). These treatments also abolished the delay in the [Ca(2+)](i) response to 0Na(+) and increased its amplitude. Extracellular ATP (1mM) caused a peak and plateau in [Ca(2+)](i), and only the plateau was inhibited by KB-R7943 (10microM), a selective blocker of reverse-mode NCX. Evidence for ATP-mediated NCX-reversal was also found in changes in [Na(+)](i). Mitochondria normally exhibited a transient elevation of [Ca(2+)] in response to ATP, but inhibiting the mitochondrial NCX with CGP-37157 (10microM) unmasked an agonist-induced increase in mitochondrial Ca(2+)-flux. This flux was blocked by KB-R7943. In summary, mitochondria and the sarcoplasmic reticulum co-operate to buffer changes in [Ca(2+)](i) due to agonist-induced NCX reversal.  相似文献   

2.
Whether mitochondrial Ca(2+) transport is rapid enough to respond to changes in cytosolic [Ca(2+)] ([Ca(2+)](c)) which occur during excitation-contraction coupling in the heart is controversial; different results wereobtained with different techniques and different species. In this study mitochondrial [Ca(2+)] ([Ca(2+)](m)) was measured in indo-1/AM-loaded myocytes from rat and guinea-pig hearts where the cytosolic indo-1 had been removed by extended incubation of cells at 37 degrees C ("heat treatment"). The mitochondrial origin of the remaining fluorescence was confirmed by sensitivity of the indo-1 signal to ruthenium red. In resting rat myocytes, [Ca(2+)](m) was lower than [Ca(2+)](c), whereas in guinea-pig cells [Ca(2+)](m) was higher than [Ca(2+)](c). Upon electrical stimulation of cells, no change occurred in [Ca(2+)](m) in rat myocytes. However, in guinea-pig cells mitochondrial Ca(2+) transients were clearly visible with a mean indo-1 ratio amplitude of 0.153 +/- 0.2 (n = 20), compared with 0.306 +/- 0.02 (n = 25), p < 0.001, prior to heat treatment. These observations suggest significant differences in mitochondrial Ca(2+) transport in cardiomyocytes from different species.  相似文献   

3.
KB-R7943 and SEA0400 are Na(+)/Ca(2+) exchanger (NCX) inhibitors with differing potency and selectivity. The cardioprotective efficacy of these NCX inhibitors was examined in isolated rabbit hearts (Langendorff perfused) subjected to regional ischemia (coronary artery ligation) and reperfusion. KB-R7943 and SEA0400 elicited concentration-dependent reductions in infarct size (SEA0400 EC(50): 5.7 nM). SEA0400 was more efficacious than KB-R7943 (reduction in infarct size at 1 microM: SEA0400, 75%; KB-R7943, 40%). Treatment with either inhibitor yielded similar reductions in infarct size whether administered before or after regional ischemia. SEA0400 (1 microM) improved postischemic recovery of function (+/-dP/dt), whereas KB-R7943 impaired cardiac function at >/=1 microM. At 5-20 microM, KBR-7943 elicited rapid and profound depressions of heart rate, left ventricular developed pressure, and +/-dP/dt. Thus the ability of KB-R7943 to provide cardioprotection is modest and limited by negative effects on cardiac function, whereas the more selective NCX inhibitor SEA0400 elicits marked reductions in myocardial ischemic injury and improved +/-dP/dt. NCX inhibition represents an attractive approach for achieving clinical cardioprotection.  相似文献   

4.
We have studied cyclopiazonic acid (CPA)-sensitive store-operated Ca(2+) entry (SOCE) in cultured neurons and astrocytes and examined the effect of 2-[2-[4-(4-nitrobenzyloxy)phenyl]]isothiourea (KB-R7943), which is often used as a selective inhibitor of the Na(+)-Ca(2+) exchanger (NCX), on the SOCE. CPA increased transiently intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a sustained increase in [Ca(2+)](i) in neurons and astrocytes. The sustained increase in [Ca(2+)](i) depended on the presence of extracellular Ca(2+) and inhibited by SOCE inhibitors, but not by a Ca(2+) channel inhibitor. CPA also caused quenching of fura-2 fluorescence when the cells were incubated in Mn(2+)-containing medium. KB-R7943 at 10 microM inhibited significantly CPA-induced sustained increase in [Ca(2+)](i) in neurons and astrocytes. KB-R7943 also inhibited CPA-induced quenching of fura-2 fluorescence in the presence of extracellular Mn(2+). These results indicate that cultured neurons and astrocytes possess SOCE and that KB-R7943 inhibits not only NCX but also SOCE.  相似文献   

5.
To gain more insight into the mechanistic processes controlling the kinetics of inotropic response of digoxin in the perfused whole heart, an integrated kinetic model was developed incorporating digoxin uptake, receptor binding (Na(+)-K(+)-ATPase inhibition), and cellular events linking receptor occupation and response. The model was applied to data obtained in the single-pass Langendorff-perfused rat heart for external [Ca(2+)] of 0.5 and 1.5 mM under control conditions and in the presence of the reverse-mode Na(+)/Ca(2+) exchange inhibitor KB-R7943 (0.1 microM) in perfusate. Outflow concentration and left ventricular developed pressure data measured for three consecutive doses (15, 30, and 45 microg) in each heart were analyzed simultaneously. While disposition kinetics of digoxin was determined by interaction with a heterogeneous receptor population consisting of a high-affinity/low-capacity and a low-affinity/high- capacity binding site, response generation was >80% mediated by binding to the high-affinity receptor. Digoxin sensitivity increased at lower external [Ca(2+)] due to higher stimulus amplification. Coadministration of KB-R7943 significantly reduced the positive inotropic effect of digoxin at higher doses (30 and 45 microg) and led to a saturated and delayed receptor occupancy-response relationship in the cellular effectuation model. The results provide further evidence for the functional heterogeneity of the Na(+)-K(+)-ATPase and suggest that in the presence of KB-R7943 a reduction of the Ca(2+) influx rate via the reverse mode Na(+)/Ca(2+) exchanger might become the limiting factor in digoxin response generation.  相似文献   

6.
Transforming growth factor (TGF)-beta and des-Arg(10)-kallidin stimulate the expression of connective tissue growth factor (CTGF), a matrix signaling molecule that is frequently overexpressed in fibrotic disorders. Because the early signal transduction events regulating CTGF expression are unclear, we investigated the role of Ca(2+) homeostasis in CTGF mRNA expression in TGF-beta1- and des-Arg(10)-kallidin-stimulated human lung myofibroblasts. Activation of the kinin B1 receptor with des-Arg(10)-kallidin stimulated a rise in cytosolic Ca(2+) that was extracellular Na(+)-dependent and extracellular Ca(2+)-dependent. The des-Arg(10)-kallidin-stimulated increase of cytosolic Ca(2+) was blocked by KB-R7943, a specific inhibitor of Ca(2+) entry mode operation of the plasma membrane Na(+)/Ca(2+) exchanger. TGF-beta1 similarly stimulated a KB-R7943-sensitive increase of cytosolic Ca(2+) with kinetics distinct from the des-Arg(10)-kallidin-stimulated Ca(2+) response. We also found that KB-R7943 or 2',4'-dichlorobenzamil, an amiloride analog that inhibits the Na(+)/Ca(2+) exchanger activity, blocked the TGF-beta1- and des-Arg(10)-kallidin-stimulated increases of CTGF mRNA. Pretreatment with KB-R7943 also reduced the basal and TGF-beta1-stimulated levels of alpha1(I) collagen and alpha smooth muscle actin mRNAs. These data suggest that, in addition to regulating ion homeostasis, Na(+)/Ca(2+) exchanger acts as a signal transducer regulating CTGF, alpha1(I) collagen, and alpha smooth muscle actin expression. Consistent with a more widespread role for Na(+)/Ca(2+) exchanger in fibrogenesis, we also observed that KB-R7943 likewise blocked TGF-beta1-stimulated levels of CTGF mRNA in human microvascular endothelial and human osteoblast-like cells. We conclude that Ca(2+) entry mode operation of the Na(+)/Ca(2+) exchanger is required for des-Arg(10)-kallidin- and TGF-beta1-stimulated fibrogenesis and participates in the maintenance of the myofibroblast phenotype.  相似文献   

7.
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms.  相似文献   

8.
Liu W  Yasui K  Opthof T  Ishiki R  Lee JK  Kamiya K  Yokota M  Kodama I 《Life sciences》2002,71(11):1279-1292
Transplant of immature cardiomyocytes is recently attracting a great deal of interest as a new experimental strategy for the treatment of failing hearts. Full understanding of normal cardiomyogenesis is essential to make this regenerative therapy feasible. We analyzed the molecular and functional changes of Ca(2+) handling proteins during development of the mouse heart from early embryo at 9.5 days postcoitum (dpc) through adulthood. From the early to the late (18 dpc) embryonic stage, mRNAs estimated by the real time PCR for ryanodine receptor (type 2, RyR2), sarcoplasmic reticulum (SR) Ca(2+) pump (type 2, SERCA2) and phospholamban (PLB) increased by 3-15 fold in the values normalized to GAPDH mRNA, although Na(+)/Ca(2+) exchanger (type 1, NCX1) mRNA was unchanged. After birth, there was a further increase in the mRNAs for RyR2, SERCA2 and PLB by 18-33 fold, but a 50% decrease in NCX1 mRNA. The protein levels of RyR2, SERCA2, PLB and NCX1, which were normalized to total protein, showed qualitatively parallel developmental changes. L-type Ca(2+) channel currents (I(Ca-L)) were increased during the development (1.3-fold at 18 dpc, 2.2-fold at adult stage, vs. 9.5 dpc). At 9.5 dpc, the Ca(2+) transient was, unlike adulthood, unaffected by the SR blockers, ryanodine (5 microM) and thapsigargin (2 microM), and also by a blocker of the Ca(2+) entry via Na(+)/Ca(2+) exchanger, KB-R 7943 (1 microM). The Ca(2+) transient was abolished after application of nisoldipine (5 microM). These results indicate that activator Ca(2+) for contraction in the early embryonic stage depends almost entirely on I(Ca-L).  相似文献   

9.
Na(+)/Ca(2+) exchangers (NCXs) and members of the canonical transient receptor potential (TRPC) channels play an important role in Ca(2+) homeostasis in heart and brain. With respect to their overlapping expression and their role as physiological Ca(2+) influx pathways a functional discrimination of both mechanisms seems to be necessary. Here, the effect of the reverse-mode NCX inhibitor KB-R7943 was investigated on different TRPC channels heterologously expressed in HEK293 cells. In patch-clamp recordings KB-R7943 potently blocked currents through TRPC3 (IC(50)=0.46 microM), TRPC6 (IC(50)=0.71 microM), and TRPC5 (IC(50)=1.38 microM). 1-Oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry was nearly completely suppressed by 10 microM KB-R7943 in TRPC6-transfected cells. Thus, KB-R7943 is able to block receptor-operated TRP channels at concentrations which are equal or below those required to inhibit reverse-mode NCX activity. These data further suggest that the protective effects of KB-R7943 in ischemic tissue may, at least partly, be due to inhibition of TRPC channels.  相似文献   

10.
To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.  相似文献   

11.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

12.
In many cell types, transfer of Ca(2+) released via ryanodine receptors (RyR) to the mitochondrial matrix is locally supported by high [Ca(2+)] microdomains at close contacts between the sarcoplasmic reticulum (SR) and mitochondria. Here we studied whether the close contacts were secured via direct physical coupling in cardiac muscle using isolated rat heart mitochondria (RHMs). "Immuno-organelle chemistry" revealed RyR2 and calsequestrin-positive SR particles associated with mitochondria in both crude and Percoll-purified "heavy" mitochondrial fractions (cRHM and pRHM), to a smaller extent in the latter one. Mitochondria-associated vesicles were also visualized by electron microscopy in the RHMs. Western blot analysis detected greatly reduced presence of SR markers (calsequestrin, SERCA2a, and phospholamban) in pRHM, suggesting that the mitochondria-associated particles represented a small subfraction of the SR. Fluorescence calcium imaging in rhod2-loaded cRHM revealed mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) responses to caffeine-induced Ca(2+) release that were prevented when thapsigargin was added to predeplete the SR or by mitochondrial Ca(2+) uptake inhibitors. Importantly, caffeine failed to increase [Ca(2+)] in the large volume of the incubation medium, suggesting that local Ca(2+) transfer between the SR particles and mitochondria mediated the [Ca(2+)](m) signal. Despite the substantially reduced SR presence, pRHM still displayed a caffeine-induced [Ca(2+)](m) rise comparable with the one recorded in cRHM. Thus, a relatively small fraction of the total SR is physically coupled and transfers Ca(2+) locally to the mitochondria in cardiac muscle. The transferred Ca(2+) stimulates dehydrogenase activity and affects mitochondrial membrane permeabilization, indicating the broad significance of the physical coupling in mitochondrial function.  相似文献   

13.
14.
We have measured intracellular free calcium ([Ca(2+)]i) using Fura-2 or Ca(2+)-sensitive microelectrodes in voltage-clamped neurones of the snail, Helix aspersa. Caffeine-induced transient increases in [Ca(2+)]i were normally followed by a brief fall of [Ca(2+)]i below its pre-caffeine level. We investigated the cause of this undershoot by raising [Ca(2+)]i; and by inhibiting the plasma membrane or endoplasmic reticulum Ca ATPases (PMCA or SERCA respectively). When the cell membrane potential was decreased from -60 to -25mV, steady-state [Ca(2+)]i increased. The caffeine-induced transients were smaller while the undershoots were larger than in control conditions. When the PMCA was inhibited by high pH the steady-state [Ca(2+)]i increased by 100-400nM. The caffeine-induced [Ca(2+)]i increase and the subsequent undershoot both became larger. Injection of orthovanadate, which inhibits the PMCA and increases [Ca(2+)]i, did not block either effect of caffeine. But when the SERCA was inhibited by cyclopiazonic acid the undershoot disappeared. The phosphodiesterase inhibitor IBMX did not influence the undershoot. These results suggest that the undershoot is generated by the Ca(2+)] ATPase of the stores rather than that of the plasma membrane. Since the undershoot increased as [Ca(2+)]i increased, we conclude that at higher levels of [Ca(2+)]i the stores refill more rapidly.  相似文献   

15.
The Na+/Ca2+ exchanger plays a prominent role in regulating intracellular Ca2+ levels in cardiac myocytes and can serve as both a Ca2+ influx and efflux pathway. A novel inhibitor, KB-R7943, has been reported to selectively inhibit the reverse mode (i.e., Ca2+ entry) of Na+/Ca2+ exchange transport, although many aspects of its inhibitory properties remain controversial. We evaluated the inhibitory effects of KB-R7943 on Na+/Ca2+ exchange currents using the giant excised patch-clamp technique. Membrane patches were obtained from Xenopus laevis oocytes expressing the cloned cardiac Na+/Ca2+ exchanger NCX1.1, and outward, inward, and combined inward-outward currents were studied. KB-R7943 preferentially inhibited outward (i.e., reverse) Na+/Ca2+ exchange currents. The inhibitory mechanism consists of direct effects on the transport machinery of the exchanger, with additional influences on ionic regulatory properties. Competitive interactions between KB-R7943 and the transported ions were not observed. The antiarrhythmic effects of KB-R7943 were then evaluated in an ischemia-reperfusion model of cardiac injury in Langendorff-perfused whole rabbit hearts using electrocardiography and measurements of left ventricular pressure. When 3 microM KB-R7943 was applied for 10 min before a 30-min global ischemic period, ventricular arrhythmias (tachycardia and fibrillation) associated with both ischemia and reperfusion were almost completely suppressed. The observed electrophysiological profile of KB-R7943 and its protective effects on ischemia-reperfusion-induced ventricular arrhythmias support the notion of a prominent role of Ca2+ entry via reverse Na+/Ca2+ exchange in this process.  相似文献   

16.
Calcium signal transmission between endoplasmic reticulum (ER) and mitochondria is supported by a local [Ca(2+)] control that operates between IP(3)receptor Ca(2+)release channels (IP(3)R) and mitochondrial Ca(2+)uptake sites, and displays functional similarities to synaptic transmission. Activation of IP(3)R by IP(3)is known to evoke quantal Ca(2+)mobilization that is associated with incremental elevations of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)). Here we report that activation of IP(3)R by adenophostin-A (AP) yields non-quantal Ca(2+)mobilization in mast cells. We also show that the AP-induced continuous Ca(2+)release causes relatively small [Ca(2+)](m)responses, in particular, the sustained phase of Ca(2+)release is not sensed by the mitochondria. Inhibition of ER Ca(2+)pumps by thapsigargin slightly increases IP(3)-induced [Ca(2+)](m)responses, but augments AP-induced [Ca(2+)](m)responses in a large extent. In adherent permeabilized cells exposed to elevated [Ca(2+)], ER Ca(2+)uptake fails to affect global cytosolic [Ca(2+)], but attenuates [Ca(2+)](m)responses. Moreover, almost every mitochondrion exhibits a region very close to ER Ca(2+)pumps visualized by BODIPY-FL-thapsigargin or SERCA antibody. Thus, at the ER-mitochondrial junctions, localized ER Ca(2+)uptake provides a mechanism to attenuate the mitochondrial response during continuous Ca(2+)release through the IP(3)R or during gradual Ca(2+)influx to the junction between ER and mitochondria.  相似文献   

17.
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports where pharmacological inhibition of SERCA improved postischemic function. SERCA2a is the primary cardiac isoform regulating intracellular Ca(2+) homeostasis; however, SERCA1a has been shown to substitute SERCA2a with faster Ca(2+) transport kinetics. Therefore, to further address this issue and to evaluate whether SERCA1a expression could improve postischemic cardiac function and myocardial salvage, in vitro and in vivo myocardial I/R studies were performed on SERCA1a transgenic (SERCA1a(+/+)) and nontransgenic (NTG) mice. Langendorff-perfused hearts were subjected to 30 min of global ischemia followed by reperfusion. Baseline preischemic coronary flow and left ventricular developed pressure were significantly greater in SERCA1a(+/+) mice compared with NTG mice. Independent of reperfusion-induced oxidative stress, SERCA1a(+/+) hearts demonstrated greatly improved postischemic (45 min) contractile recovery with less persistent arrhythmias compared with NTG hearts. Morphometry showed better-preserved myocardial structure with less infarction, and electron microscopy demonstrated better-preserved myofibrillar and mitochondrial ultrastructure in SERCA1a(+/+) hearts. Importantly, intraischemic Ca(2+) levels were significantly lower in SERCA1a(+/+) hearts. The cardioprotective effect of SERCA1a was also observed during in vivo regional I/R with reduced myocardial infarct size after 24 h of reperfusion. Thus SERCA1a(+/+) hearts were markedly protected against I/R injury, suggesting that expression of SERCA 1a isoform reduces postischemic Ca(2+) overload and thus provides potent myocardial protection.  相似文献   

18.
Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.  相似文献   

19.
Muscle contraction requires ATP and Ca(2+) and, thus, is under direct control of mitochondria and the sarcoplasmic reticulum. During postnatal skeletal muscle maturation, the mitochondrial network exhibits a shift from a longitudinal ("longitudinal mitochondria") to a mostly transversal orientation as a result of a progressive increase in mitochondrial association with Ca(2+) release units (CRUs) or triads ("triadic mitochondria"). To determine the physiological implications of this shift in mitochondrial disposition, we used confocal microscopy to monitor activity-dependent changes in myoplasmic (fluo 4) and mitochondrial (rhod 2) Ca(2+) in single flexor digitorum brevis (FDB) fibers from 1- to 4-mo-old mice. A robust and sustained Ca(2+) accumulation in triadic mitochondria was triggered by repetitive tetanic stimulation (500 ms, 100 Hz, every 2.5 s) in FDB fibers from 4-mo-old mice. Specifically, mitochondrial rhod 2 fluorescence increased 272 ± 39% after a single tetanus and 412 ± 45% after five tetani and decayed slowly over 10 min following the final tetanus. Similar results were observed in fibers expressing mitochondrial pericam, a mitochondrial-targeted ratiometric Ca(2+) indicator. Interestingly, sustained mitochondrial Ca(2+) uptake following repetitive tetanic stimulation was similar for triadic and longitudinal mitochondria in FDB fibers from 1-mo-old mice, and both mitochondrial populations were found by electron microscopy to be continuous and structurally tethered to the sarcoplasmic reticulum. Conversely, the frequency of osmotic shock-induced Ca(2+) sparks per CRU density decreased threefold (from 3.6 ± 0.2 to 1.2 ± 0.1 events·CRU(-1)·min(-1)·100 μm(-2)) during postnatal development in direct linear correspondence (r(2) = 0.95) to an increase in mitochondrion-CRU pairing. Together, these results indicate that mitochondrion-CRU association promotes Ca(2+) spark suppression but does not significantly impact mitochondrial Ca(2+) uptake.  相似文献   

20.
DMA增加正常大鼠心肌细胞钙瞬变和收缩   总被引:13,自引:5,他引:8  
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2002,54(3):219-224
实验观察了钠氢交换或钠钙交换抑制剂 5 (N ,N 二甲基 )氨氯吡咪 (DMA)对正常和心肌肥厚大鼠分离心室肌细胞钙瞬变和细胞收缩的影响。通过负载荧光染料Fura 2 /Am ,应用离子影像分析系统 (IonImagingSystem)同步测定离体大鼠心肌细胞钙瞬变和细胞长度。结果表明 :DMA 10 μmol/L分别使钙瞬变和细胞缩短从对照组的 2 0 9.6 0± 5 4.96和 3.0 7± 0 .97μm增加到 2 38.5 0± 80 .41和 4.0 7± 1.0 2 μm (P <0 .0 5 ,n =7)。应用特异性反向钠钙交换阻断剂KB R7943可完全阻断DMA的激动作用。DMA还可使尼卡地平抑制L 型钙通道后的钙瞬变和细胞收缩增加。在肥厚心肌细胞 ,DMA表现出相同的药理作用 ,但对钙瞬变和细胞缩短的刺激作用更强。结果表明 :DMA可通过反向钠钙交换途径增加正常和肥厚大鼠心肌细胞钙瞬变和细胞收缩 ,且对肥厚心肌细胞的影响比对正常心肌细胞大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号