首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the cause for the decreased number of primordial germ cells (PGC) in Xenopus albino (a(p)/a(p)) tadpoles, the number of presumptive PGC (pPGC) in the albino and wild-type embryos at Nieuwkoop and Faber's stages 6-37/38 were examined using the antibody specific to germ plasm. The positions of pPGC in the endodermal cell mass in embryos of both types at stages 28 and 33/34 were also observed to learn the migratory behavior of pPGC. The number of pPGC in the albino increased up to stage 28 with development, but decreased thereafter. In contrast, the number in the wild-type increased to stage 33/34 as development proceeded, and the number of pPGC in stage 33/34 embryos reached nearly that of PGC of the feeding tadpoles in the same batches. Judging from the positions of pPGC, the migration of pPGC from the median part through the lateral to the dorsal part of the endodermal cell mass in the albino was suspected to be somewhat later than that in the wild-type. These results, together with the results in previous studies, suggest that the decreased number of PGC in the albino would be closely related to the sudden decrease in number of pPGC at stage 33/34, as well as to the ectopic position of pPGC in endodermal cell mass, the latter of which had already been demonstrated to be responsible for the differentiation into PGC.  相似文献   

2.
Whether overexpression of Xenopus vasa homologue or Xenopus vasa-like gene 1 (XVLG1) in germline cells of Xenopus embryos can induce supernumerary primordial germ cells (PGC) at tadpole stage was investigated. XVLG1 RNA (0.1-2.0 ng) and beta-gal RNA (0.5 ng) were injected into one of, usually, four germ plasm-bearing cells (GPBC) of 32-cell embryos, with the beta-gal RNA (2.0 ng) serving as both lineage tracer and control for XVLG1 RNA. The total number of PGC, including X-gal-stained and unstained PGC of injected and uninjected GPBC origins respectively, was examined in the experimental tadpoles developed from the injected embryos. The injected RNA, XVLG1 and beta-gal RNA, were translated, resulting in a large amount of corresponding proteins in presumptive PGC (pPGC) as well as in somatic cells derived from the injected GPBC. Nevertheless, the average number of total PGC per tadpole found in the experimental tadpoles from the XVLG1 RNA-injected embryos was not significantly different from that of beta-gal RNA-injected ones, irrespective of the injected dose of XVLG1 RNA. This indicates that the extra XVLG1 protein in pPGC is not sufficient to increase the number of PGC in the tadpoles.  相似文献   

3.
In order to understand the role of the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) in germ line cells, an attempt was made to perturb the function of the protein with the anti-vasa antibody 2L-13. The 2L-13 or the control antibody was microinjected with a lineage tracer (FITC-dextran-lysine, FDL) into single vegetal blastomeres containing the germ plasm of Xenopus 32-cell embryos, the descendants of which were destined to differentiate into a small number of primordial germ cells (PGC) and a large number of somatic cells, mostly of endodermal tissues at the tadpole stage. No significant effect of the injection of the antibodies on FDL-labeled, presumptive PGC (pPGC) was observed in embryos until stage 37/38. However, FDL-labeled PGC were not observed in almost all the 2L-13 antibody-injected tadpoles, although a similar number of labeled somatic cells were always present. As 2L-13 antibody specifically reacts with XVLG1 protein in the embryos by immunoblotting, the present results suggest that the antibody perturbed the function of XVLG1 protein in the pPGC, resulting in failure of PGC differentiation at the tadpole stage.  相似文献   

4.
We investigated the mode of migration of presumptive primordial germ cells (pPGC) in the endoderm cell mass of Xenopus embryos at stages 7-40. The molecules underlying the migration were also studied cytochemically and immunocytologically. By examining the relative positions of pPGC and somatic cells derived from the single, fluorescein-dextran lysine (FDL)-injected, germ plasm-bearing cells of stage 6 embryos, pPGC in embryos at stages 7-23 and those at stages later than 24 were assumed to passively and actively migrate in the endoderm cell mass, respectively. This assumption was supported by the observation that F-actin, essential for active cell migration, was recognized on pPGC of the latter stages, but never on those of the former ones. In addition, the molecule like CXC chemokine receptor 4 (CXCR4) found on directionally migrating PGC in mouse and zebrafish, probably Xenopus CXCR4 (xCXCR4), was detected on pPGC only at latter stages. Accordingly, F-actin and xCXCR4, and probably beta1-integrin and collagen type IV, which are indispensable for the formation of F-actin, are thought to be involved in the active migration of pPGC in the endoderm cell mass.  相似文献   

5.
In order to know when the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) first appears in germ line cells and whether the protein is also present in somatic cells as is vasa protein in Drosophila , the spatio-temporal distribution of the protein in Xenopus embryos was carefully investigated by fluorescent microscopy. Part of the observation was performed by whole-mount immunocytochemistry and immunoblotting. A distinct fluorescence of XVLG1 protein was first recognized in a juxta-nuclear location of germ line cells or presumptive primordial germ cells (pPGC) at stage 12 (late gastrula) and remained associated with the pPGC or primordial germ cells (PGC) throughout the following stages until stage 46 (feeding tadpole). In contrast, weak fluorescence was seen in the animal hemisphere rather than in the vegetal hemisphere of cleaving embryos and in the perinuclear region of somatic cells at stages 10–42 (early gastrula to young tadpole), respectively. Nearly the same pattern as revealed by fluorescence was seen by whole-mount immunocytochemistry, except that a small amount of XVLG1 protein seemed to be present in the germ plasm and pPGC of embryos earlier than stage 12. The presence of the protein in the somatic cells and the PGC was also shown by immunoblotting.  相似文献   

6.
7.
In order to know the role of the Xdsg gene in presumptive PGCs (pPGCs) of Xenopus, we attempted to inhibit the translation of Xdsg mRNA in pPGCs by injecting antisense morpholino oligo (asMO), together with Fluorescein Dextran-Lysine (FDL), into single germ plasm-bearing cells of 32-cell embryos. Among three types of asMOs complementary to different parts of the 5'-untranslated region of Xdsg mRNA tested, only one asMO, designated as Xdsg-3, inhibited the translation of the mRNA in FDL-labeled pPGCs, resulting in the absence of labeled PGCs in experimental tadpoles. On the other hand, two other asMOs, Xdsg-1 and -2, did not inhibit the translation, so that a similar number of labeled PGCs found in FDL-injected but asMO-uninjected control tadpoles were observed in experimental tadpoles derived from asMO-injected embryos. Surprisingly, use of Xdsg-3 asMO resulted in the disappearance of the protein of Xenopus vasa homolog (Xenopus vasa-like gene 1, XVLG1) from FDL-labeled pPGCs by inhibiting the translation of XVLG1 mRNA. However, the effect of Xdsg-3 asMO on the translation of Xdsg and XVLG1 mRNAs and PGC formation could be canceled by the coinjection with Xdsg mRNA. Consequently, the Xdsg protein in pPGCs may play an important role in the formation of PGCs by regulating the production of XVLG1 protein.  相似文献   

8.
9.
In the periodic albino mutant (a(p)/a(p)) of Xenopus laevis, peculiar leucophore-like cells appear in the skins of tadpoles and froglets, whereas no such cells are observed in the wild-type (+/+). These leucophore-like cells are unusual in (1) appearing white, but not iridescent, under incident light, (2) emitting green fluorescence under blue light, (3) exhibiting pigment dispersion in the presence of alpha-melanocyte stimulating hormone (alphaMSH), and (4) containing an abundance of bizarre-shaped, reflecting platelet-like organelles. In this study, the developmental and ultrastructural characteristics of these leucophore-like cells were compared with melanophores, iridophores and xanthophores, utilizing fluorescence stereomicroscopy, and light and electron microscopy. Staining with methylene blue, exposure to alphaMSH, and culture of neural crest cells were also performed to clarify the pigment cell type. The results obtained clearly indicate that: (1) the leucophore-like cells in the mutant are different from melanophores, iridophores and xanthophores, (2) the leucophore-like cells are essentially similar to melanophores of the wild-type with respect to their localization in the skin and manner of response to alphaMSH, (3) the leucophore-like cells contain many premelanosomes that are observed in developing melanophores, and (4) mosaic pigment cells containing both melanosomes specific to mutant melanophores and peculiar reflecting platelet-like organelles are observed in the mutant tadpoles. These findings strongly suggest that the leucophore-like cells in the periodic albino mutant are derived from the melanophore lineage, which provides some insight into the origin of brightly colored pigment cells in lower vertebrates.  相似文献   

10.
Cell death in the germ line is controlled by both positive and negative mechanisms that maintain the appropriate number of germ cells and that prevent the possible formation of germ cell tumors. In the mouse embryo, Steel/c-Kit signaling is required to prevent migrating primordial germ cells (PGCs) from undergoing Bax-dependent apoptosis. In our current study, we show that migrating PGCs also undergo apoptosis in Nanos3-null embryos. We assessed whether the Bax-dependent apoptotic pathway is responsible for this cell death by knocking out the Bax gene together with the Nanos3 gene. Differing from Steel-null embryos, however, the Bax elimination did not completely rescue PGC apoptosis in Nanos3-null embryos, and only a portion of the PGCs survived in the double knockout embryo. We further established a mouse line, Nanos3-Cre-pA, to undertake lineage analysis and our results indicate that most of the Nanos3-null PGCs die rather than differentiate into somatic cells, irrespective of the presence or absence of Bax. In addition, a small number of surviving PGCs in Nanos3/Bax-null mice are maintained and differentiate as male and female germ cells in the adult gonads. Our findings thus suggest that heterogeneity exists in the PGC populations and that Nanos3 maintains the germ cell lineage by suppressing both Bax-dependent and Bax-independent apoptotic pathways.  相似文献   

11.
Single blastomeres containing the "germ plasm" were isolated from 32-cell embryos of Xenopus albino (ap/ap) or wild type and cultured in vitro until the corresponding normal control embryos reached the neurula stage. The resulting explants from albinos were implanted into wild-type host neurulae and vice versa. The formation of functional gametes, eggs or sperm, of donor type was tested when the operated host embryos had reached sexual maturity. The color of the eggs laid by the experimental females and the presence or absence of melanophores in the epidermis and of pigment granules in the eyes of hatched larvae from matings of the experimental males with albino females made possible the identification of donor-type gametes. Twelve males and 12 females of the wild-type hosts, and 16 males and 14 females of the albino hosts survived. Six animals produced donor-type eggs or sperm, most of them being germ line chimeras. This shows that functional gametes can develop from explants derived from single blastomeres containing the "germ plasm."  相似文献   

12.
In the field of germline development in amniote vertebrates, primordial germ cell (PGC) specification in birds and reptiles remains controversial. Avians are believed to adopt a predetermination or maternal specification mode of PGC formation, contrary to an inductive mode employed by mammals and, supposedly, reptiles. Here, we revisit and review some key aspects of PGC development that channelled the current subdivision, and challenge the position of birds and reptiles as well as the ‘binary’ evolutionary model of PGC development in vertebrates. We propose an alternative view on PGC specification where germ plasm plays a role in laying the foundation for the formation of PGC precursors (pPGC), but not necessarily of PGCs. Moreover, inductive mechanisms may be necessary for the transition from pPGCs to PGCs. Within this framework, the implementation of data from birds and reptiles could provide new insights on the evolution of PGC specification in amniotes.  相似文献   

13.
14.
Signals from extraembryonic tissues in mice determine which proximal epiblast cells become primordial germ cells (PGCs). After their specification, approximately 40 PGCs appear at the base of the allantoic bud and migrate to the genital ridges, where they expand to about 25?000 cells by Embryonic Day (E)13.5. The heterochromatin protein 1 (HP1) family members HP1alpha, HP1beta, and HP1gamma (CBX5, CBX1, and CBX3, respectively) are thought to induce heterochromatin structure and to regulate gene expression by binding methylated histone H3 lysine 9. We found a dramatic loss of germ cells before meiosis in HP1gamma mutant (HP1gamma(-/-)) mice that we generated previously. The reduction in PGCs in HP1gamma(-/-) embryos was detectable from the early bud stage (E7.25), and the number of HP1gamma(-/-) PGCs was gradually reduced thereafter. Bromodeoxyuridine incorporation into PGCs was significantly reduced in E7.25 and E12.5 HP1gamma(-/-) embryos. Furthermore, a lower proportion of HP1gamma(-/-) PGCs than wild-type PGCs was in S phase, and a higher proportion, respectively, was in G1 phase at E12.5. Moreover, the proportion of p21 (Cip, official symbol CDKN1A)-positive HP1gamma(-/-) PGCs was increased, suggesting that the G1/S phase transition was inhibited. However, no differences were detected between fate determination, migration, apoptosis, or histone modification of PGCs of control embryos and those of HP1gamma(-/-) embryos. Therefore, the reduction in PGCs in HP1gamma(-/-) embryos could be caused by impaired cell cycle in PGCs. These results suggest that HP1gamma plays an important role in keeping enough germ cells by regulating the PGC cell cycle.  相似文献   

15.
As in many other animals, the primordial germ cells (PGCs) in avian and reptile embryos are specified in positions distinct from the positions where they differentiate into sperm and egg. Unlike in other organism however, in these embryos, the PGCs use the vascular system as a vehicle to transport them to the region of the gonad where they exit the blood vessels and reach their target. To determine the molecular mechanisms governing PGC migration in these species, we have investigated the role of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) in guiding the cells towards their target in the chick embryo. We show that sdf-1 mRNA is expressed in locations where PGCs are found and towards which they migrate at the time they leave the blood vessels. Ectopically expressed chicken SDF-1alpha led to accumulation of PGCs at those positions. This analysis, as well as analysis of gene expression and PGC behavior in the mouse embryo, suggest that in both organisms, SDF-1 functions during the second phase of PGC migration, and not at earlier phases. These findings suggest that SDF-1 is required for the PGCs to execute the final migration steps as they transmigrate through the blood vessel endothelium of the chick or the gut epithelium of the mouse.  相似文献   

16.
17.
Abstract. Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemi-sphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses.
Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4° C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displace-ment of the germ plasm away from its original vegetal pole location.  相似文献   

18.
Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemisphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses. Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4 degrees C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displacement of the germ plasm away from its original vegetal pole location.  相似文献   

19.
The Bh (black at hatch) gene was examined to determine whether it is expressed in plumage melanocytes by analyzing pigmentation patterns of Bh melanocytes placed in the micro-environment of the feather germs of quail embryos with pink eyes. These host quails genetically lack a large part of plumage melanin. The Bh locus in these almost white quails is wild-type. When Bh neural crest cells were transplanted orthotopically into the host embryos, wild-type and Bh /+ melanocytes, which differentiated from the transplanted neural crest cells, formed plumage pigmentation patterns characteristic of each genotype in the micro-environment of the host feather germs. Brown plumage pigmentation, which was very similar to that of 10-day Bh / Bh embryos, was also observed in the feather germs of host embryos that received Bh neural crest cells, although the genotype of the donors could not be determined. These donors died before pigmentation of their feather germs occurred. The results demonstrate that pigmentation patterns of Bh menalocytes are not altered in the micro-environment of the host germs, suggesting that the Bh gene is autonomous in Bh melanocytes and is expressed in melanocytes of both Bh and the host feather germs, and that it causes the normal pigmentation pattern to be altered.  相似文献   

20.
Pin1 regulates the timing of mammalian primordial germ cell proliferation   总被引:8,自引:0,他引:8  
Primordial germ cells (PGCs) give rise to male and female germ cells to transmit the genome from generation to generation. Defects in PGC development often result in infertility. In the mouse embryo, PGCs undergo proliferation and expansion during and after their migration to the gonads from 8.5 to 13.5 days post coitum (dpc). We show that a peptidyl-prolyl isomerase, Pin1, is involved in the regulation of mammalian PGC proliferation. We discovered that both the male and female Pin1(-/-) mice had profound fertility defects. Investigation of the reproductive organs revealed significantly fewer germ cells in the adult Pin1(-/-) testes and ovaries than in wild type or heterozygotes, which resulted from Pin1(-/-) males and females being born with severely reduced number of gonocytes and oocytes. Further studies in 8.5 to 13.5 dpc Pin1(-/-) embryos showed that PGCs were allocated properly at the base of the allantois, but their cell expansion was progressively impaired, resulting in a markedly reduced number of PGCs at 13.5 dpc. Analyses using markers of cell cycle parameters and apoptosis revealed that Pin1(-/-) PGCs did not undergo cell cycle arrest or apoptosis. Instead, Pin1(-/-) PGCs had a lower BrdU labeling index compared with wild-type PGCs. We conclude that PGCs have a prolonged cell cycle in the absence of Pin1, which translates into fewer cell divisions and strikingly fewer Pin1(-/-) PGCs by the end of the proliferative phase. These results indicate that Pin1 regulates the timing of PGC proliferation during mouse embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号