首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various models advanced to explaintherelationship between cell dimensions and generation time are compared for rod-shaped bacteria growing under steady-state conditions. Equations are developed for three such models based on the linear extension of surface area. The first assumes that the rate of envelope synthesis is proportional to the instantaneous number of chromosome replication forks per cell; the second, that it is inversely related to the generation time and doubles a fixed time d prior to cell division; the third, that it is constant and doubles at initiation of chromosome replication.Non-linear least-squares analysis is used to fit the theoretical expressions for mean surface area to values calculated from experimental measurements of length and width by assuming the geometry of a right circular cylinder with hemispherical polar caps. The functions describing area at birth are all discontinuous and cannot be solved by accepted techniques; they can, however, be used to test the internal consistency of each model.Model 1 is consistent only when lateral extension and septum formation are not considered as independent processes. Model 2 provides a very satisfactory fit, the best estimate for d being 49 ± 4 min. In both cases, the values of the parameters obtained are statistically indistinguishable from those predicted on the basis of a much simpler geometry: a circular cylinder with plane parallel ends. Model 3 is unsuitable and can be rejected.Sources of experimental error and some possible consequences of the simplifications used in constructing the models, are considered. A detailed comparison is made between the control of length extension proposed previously and control of envelope synthesis. The implications of the results are discussed, and a more promising way of discriminating among the remaining models is suggested.  相似文献   

2.
A numerical model of the heat transer normal to an arteriole-venule pair embedded in muscle tissue has been constructed. Anatomical data describing the blood vessel size, spacing, and density have been incorporated into the model. This model computes temperatures along the vessel walls as well as the temperature throughout the tissue which comprises an infinitely long Krogh cylinder around the vessel pair. Tissue temperatures were computed in the steady-state under resting conditions, while transient calculations were made under hyperthermic conditions. Results show that for both large- (1st generation) and medium-sized (5th generation) vessel pairs, the mean tissue temperature within the tissue cylinder is not equal to the mean of the arteriole and venule blood temperatures under both steady-state and transient conditions. The numerical data were reduced so that a comparison could be made with the predictions of a simple two-dimensional superposition of line sources and sinks presented by Baish et al. This comparison reveals that the superposition model accurately describes the heat transfer effects during hyperthermia, permitting subsequent incorporation of this theory into a realistic three-dimensional model of heat transfer in a whole limb during hyperthermia.  相似文献   

3.
4.
The preconcentration of analytes improves sensing using probe tips. In this work, we report a method based on creating a squeeze flow between a cylinder and circular coverslip to preconcentrate material at the liquid–gas interface while allowing a probe tip to be readily inserted there. In verification tests using enhanced green fluorescent protein, this capacity is proven. We estimated a 9.7 times increase in probability for fluorophores to be picked up at the tip using inference from fluorescence intensity distributions found. The method is expeditious, simple, and inexpensive, and it does not require any electrical energy source to operate.  相似文献   

5.
The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (alpha), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O(2) and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0< or =A< or =0.75, alpha=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and alpha are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O(2) feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying alpha for the ranges investigated. The effect of pulsatility on Sh is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.  相似文献   

6.
A homogeneous, lossy circular cylinder is used as a simple model of a biological object in which interior heating is produced by the absorption of electromagnetic waves. For this model, we determined the optimum frequency, polarization, orientation and shape of applicators. Analytical and numerical results are given for both electric and magnetic line sources, with three different polarizations relative to the cylinder. Coupling efficiencies and contour plots are presented for a range of parameters. One particularly interesting result is the production of maximum energy deposition at the center of a cylinder of muscle tissue when exposed in the 100-MHz frequency range by the use of four applicators surrounding the cylinder.  相似文献   

7.
The affinity of phosvitin with serine hydroxymethyl transferase (SHMT), an acidic multi-subunit protein, was evaluated by measurements of enzyme activity, sedimentation velocity, steady-state fluorescence, circular dichroism and kinetic thermal stability. While the presence of phosvitin had no effect on the SHMT activity, the sedimentation coefficient of SHMT increased from 8.7 S to 12.5 S suggesting the formation of a complex at a SHMT:phosvitin molar ratio of 2:1. Based on steady-state fluorescence quenching measurements an association constant of 2.4 +/- 0.2 x 10(5) M-1 at 25 degrees C was obtained for the interaction of phosvitin with SHMT. The temperature dependency of the association constant in the range 15-35 degrees C suggests the involvement of ionic forces in the interaction. The thermal inactivation of SHMT followed first order kinetics. In the presence of phosvitin the rate constant decreased and half time increased. The circular dichroism measurements suggest that phosvitin interaction does not involve pyridoxal phosphate binding domain of the enzyme. Although minor changes in the secondary structure of the enzyme were observed, the environment around aromatic amino acids did not change significantly.  相似文献   

8.
Laminar motion of two viscous incompressible fluids through each other is treated for two cases: flow along the axis of a circular cylinder, and flow between parallel flat plates. Motion of either fluid entails that of the other. Regarding one fluid as a solvent, the other as a solute, and supposing the system to have ends impermeable to the former, it is found that the solvent streams with the solute down the center of the system, to return in the opposite direction out nearer the walls. Thus diffusion of a dissolved substance through a region in which the solvent is confined produces continual streaming in the latter.  相似文献   

9.
B H Dorfman  L L Van Zandt 《Biopolymers》1983,22(12):2639-2665
The problem of viscous damping of vibrating DNA polymer in solution is solved in the low-amplitude limit for all acoustic branches of the spectrum. The acoustic spectrum covers the microwave region of frequencies. Analytic solutions are obtained for a model describing the DNA polymer as a smooth circular cylinder. Numerical solutions are presented for a model describing the DNA polymer as a twisted cylinder of elliptical cross section. The amount of mass loading is determined for both models and the damped spectrum for the mass-loaded oscillator is calculated. The viscous damping is found to be a strong function of frequency, singular at very low frequencies for all modes except the torsional mode of the circular cylinder. All acoustic modes are overdamped, implying that the observation of well-defined resonances in DNA requires either highly structured water on the molecular level or very dry material.  相似文献   

10.
In this study a proteomic approach was used to investigate the steady-state response of Escherichia coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first reactor served as cell source with optimal settings for microbial growth, while in the second chemostat the cells were exposed to elevated temperatures. By using this reactor configuration, which has not been reported to be used for the study of bacterial stress responses so far, it is possible to study temperature stress under well-defined, steady-state conditions. Specifically the effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was examined and compared at the cultivation temperatures of 37°C and 47.5°C. As expected, the steady-state study with the double bioreactor configuration delivered a different protein spectrum compared to that obtained with standard batch experiments in shaking flasks and bioreactors. Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis, the energy metabolism and the amino acid biosynthesis were found to be differently expressed at high cultivation temperatures. The results demonstrate the complexity of the stress response in a steady-state culture not reported elsewhere to date.  相似文献   

11.
In calculating the diffuse irradiances of both solar and longwave radiation on geometric solids chosen to simulate organisms or parts of organisms, it is conventional to employ an isotropic sky model. This simplifies computations but may be unrealistic for radiative fluxes of atmospheric origin. The purpose of this investigation is to evaluate the significance of error brought about by the adoption of the isotropic assumption to compute the diffuse irradiance on the sphere, the vertical circular cylinder, the horizontal circular cylinder, the cone, the inclined plane, the parallelipiped, the vertical elliptical cylinder, the horizontal cylinder with hemispheric ends and the vertical cylinder with an upfacing hemispheric end. Theory is presented for the diffuse irradiance on an infinitessimal element, and for that on the solid forms. Results using the isotropic assumption are compared to those obtained using empirically-derived radiance distributions for atmospheric longwave irradiance and for solar diffuse irradiance under both overcast and cloud-free skies. These experiments suggest that, for the longwave irradiance, the isotropic sky model performs well. For solar diffuse radiation, however, errors are larger. Data are presented which permit estimation of the magnitude and direction of the error under a variety of conditions. Ultimately, the decision to employ an isotropic or anisotropic sky model will depend on the nature of the application. The methods described provide a means of evaluating the likely error resulting from the adoption of the more convenient isotropic sky model.  相似文献   

12.
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 approximately 3, where Q10 is the proportional change with a 10 degrees C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.  相似文献   

13.
A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q(y) band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties.  相似文献   

14.
The Hodgkin - Huxley system of equations is reduced to single integral-differential equation in neglection of slow variables dynamics. Two limiting cases of fast and slow sodium activation processes are considered. The first case leads to a nonlinear differential equation for the potential, the second one - to an ordinary differential equation with a known source as a function of coordinate. Such a simplification is due to approximation of steady-state sodium activation variable with the help of Heviside function. The validity of this approximation is discussed; the corresponding error is estimated by calculation of the second approximation for the source function.  相似文献   

15.
Mathematical models and results of calculation of plasma equilibrium in a circular cylinder with three helical or straight imbedded current-carrying conductors (i.e., in a straightened analog of a toroidal Galathea trap) are presented. The equilibrium is described in the framework of two-dimensional boundary value problems with plane and helical analogs of the Grad-Shafranov equation for the scalar magnetic flux function. Problems with first-kind boundary conditions corresponding to a magnetically transparent boundary of the cylinder and problems with second-kind boundary conditions and a given value of the electric current flowing in plasma (in addition to those flowing in the conductors) are considered. Deformations of magnetoplasma configurations in the cylinder for different formulations of the above-specified problems are investigated numerically.  相似文献   

16.
17.
Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments.  相似文献   

18.
The investigators in the past have developed some models of temperature distribution in the human limb assuming it as a regular circular or elliptical tapered cylinder. But in reality the limb is not of regular tapered cylindrical shape. The radius and eccentricity are not same throughout the limb. In view of above a model of temperature distribution in the irregular tapered elliptical shaped human limb is proposed for a three dimensional steady state case in this paper. The limb is assumed to be composed of multiple cylindrical substructures with variable radius and eccentricity. The mathematical model incorporates the effect of blood mass flow rate, metabolic activity and thermal conductivity. The outer surface is exposed to the environment and appropriate boundary conditions have been framed. The finite element method has been employed to obtain the solution. The temperature profiles have been computed in the dermal layers of a human limb and used to study the effect of shape, microstructure and biophysical parameters on temperature distribution in human limbs. The proposed model is one of the most realistic model as compared to conventional models as this can be effectively employed to every regular and nonregular structures of the body with variable radius and eccentricity to study the thermal behaviour.  相似文献   

19.
ABSTRACT. The response of the predatory mite, Phytoseiulus persimilis Athias-Henriot, to steep gradients of a volatile kairomone emitted by its prey, Tetranychus urticue Koch, was studied in a vertical air flow chamber. The orientation to wind direction was eliminated by using an olfactometer that had an air stream approaching the predator from below a gauze screen upon which the predator walked. The steep gradient of odour was obtained by putting a cylinder filled with prey-infested leaves vertically below the screen. Starved predators were arrested in the odour patch by walking more slowly and tortuously than well-fed predators. The latter mites did not show a significant ortho- or klinokinetic response to the presence of odour. Both well-fed and starved predators showed a chemotactic response to steep gradients at the border of the circular odour patch. Predators that happened to walk out of the patch, frequently turned back to it. This response is presumably based on idiothetic information about the predator's immediately previous walking directions, because it occurred in the odour-free zone after passing the steep gradient of prey odour. Right-about turns can help the predator to stay in static odour plumes with steep gradients at the borders. This type of plume is present only close to the odour source. Further away from the source the odour plume tends to move to and fro due to variation in wind direction. For the predator to keep track of these snaking plumes the right-about turns are unlikely to be of any value because the response is of short duration and because the response to a moving plume appeared to be inadequate; by moving the cylinder below the screen (and consequently the odour patch) it was found that the predator turned back even if the odour gradient was made to pass the predator in the same direction as that of the predator's movement.  相似文献   

20.
R Skalak  M Sugihara-Seki 《Biorheology》1988,25(1-2):181-189
The hydrodynamic interaction of a red blood cell and a white blood cell in microvessels is studied, by use of a two-dimensional numerical model. The red blood cell, modeled as a small rigid circular cylinder, and the white blood cell, modeled as a larger rigid circular cylinder, are immersed in an incompressible Newtonian fluid in a two-dimensional channel. It is assumed that no external force or moment acts on the model cells, and the effect of inertia forces on the motion of the fluid and the cells is neglected. The velocity field of the suspending fluid and the instantaneous velocities of the two model cells are computed by the finite element method. Using the translational velocities of the model cells obtained, the trajectories of their relative motion are determined, for various initial positions. It is shown that the cells may or may not pass each other or separate, depending on the initial positions. The present results compare well to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号