首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous matings with plasmids R68.45 and pULB113, and also with Hfr type donor were employed for mapping pgi and gpd genes involved in C-1 metabolism in the obligate methylotroph Methylobacillus flagellatum. A preliminary map of the late chromosomal region was constructed on the basis of these experimental results. The C-1 markers were linked to methionine and leucine auxotrophy and nalidixic acid resistance markers. The phenomenon of retrotransfer, or shuttle transfer of chromosomal markers by Inc P1 plasmids, revealed earlier, was demonstrated for M. flagellatum.  相似文献   

2.
A collection of polyauxotrophic mutants of the obligate methylotroph Methylobacillus flagellatum KT was obtained. On the first step two stable auxotrophic mutants with a high requirement for amino acids supplements were isolated by treatment with nitrosoguanidine and selection on complete medium. Spontaneous variants of these mutants with a low requirement for nutrient supplements were the base for obtaining polyauxotrophic strains. It was shown, that the growth of mutants of M. flagellatum KT is inhibited by complete medium. Some amino acids and nucleotides are the inhibitor components of complete media. An approach for selection of auxotrophic mutants of individual genes was worked out on minimal medium. The optimal conditions for nitrosoguanidine mutagenesis of M. flagellatum KT were developed. The possible mechanisms of action of some of the nutrient supplements on the growth of M. flagellatum KT are discussed.  相似文献   

3.
Abstract Extracts from the obligate methylotroph Methylobacillus flagellatum KT and its temperature-sensitive (ts) glucose 6-phosphate dehydrogenase (GPD) mutants were analysed by electrophoresis, isoelectrofocusing and chromatography methods. GPD is present in two forms differing in the isoelectric point (IEP) values, but identical in other properties. Both forms are specific to NAD and NADP, have similar affinity to substrates, exhibit equal levels of inhibition by NAD(P)H and ATP and have the same dependence of activity on temperature. The synthesis of both forms is controlled by one gene. 6-phosphogluconate dehydrogenase (GND) is represented by two proteins with different IEP values. One is specific both to NAD and NADP, is stable and inhibited by NADH and NADPH to a similar extent. The second is specific to NAD only, unstable and inhibited by NADH to a greater extent than by NADPH.  相似文献   

4.
In methanol-limited continuous cultures of the obligate methylotrophic bacteriumMethylobacillus flagellatum grown at rates from 0.05 to 0.63 h-1, and also in an oxyturbidostat culture ofM. flagellatum growing at the rate of 0.73 h-1, levels of methanol dehydrogenase, enzymes of formaldehyde oxidation (both linear and cyclic) and assimilation (RuMP cycle), a number of intermediary metabolism and TCA cycle enzymes and also dye-linked formaldehyde dehydrogenase were determined. It was shown that the activities of dissimilatory enzymes, with the exception of dye-linked formaldehyde dehydrogenase, decreased with increasing growth rate. Activities of assimilative enzymes and activities of the TCA cycle enzymes detected as well as the dye-linked formaldehyde dehydrogenase activity, increased with increasing growth rate. A periplasmic location was shown for the latter enzyme and a role in formaldehyde detoxification was proposed.  相似文献   

5.
Abstract NADP-dependent glutamate dehydrogenase (GDH; E.C.1.4.1.4) was purified from an obligate methylotroph Methylobacillus flagellatum using ammonium sulphate precipitation, DEAE-Sepharose and dye-ligand Procion red HE3B column chromatography and Sephacryl S-200 gel-filtration. The Mr of the native enzyme was estimated to be 300 000 (±5000). The enzyme consists of six identical subunits with an Mr of 47 000 (±3000) (SDS-PAGE). The enzyme has a pH optimum of 8.0 when participating in amination and 9.5 in deamination. Michaelis-Menten kinetics were observed for both reactions. The apparent Km values were 1.33 mM, 0.032 mM, 11.5 mM, 7.0 mM and 0.014 mM for α-ketoglutarate, NADPH, NH4+, glutamate and NADP+, respectively. The enzyme was highly specific for all the substrates and was insensitive to inhibitors. It plays an exclusively anabolic role in the cells.  相似文献   

6.
Abstract The accumulation of l -threonine by the methylotrophic bacterium Methylobacillus flagellatum KT occurs via a specific system that is capable of transporting l -threonine against a 100-fold concentration gradient. This transport system demonstrates the following kinetic parameters: K m= 0.2 mM and V max= 2.5 nmol/min/mg of cells (dry weight). The activity of the system is inhibited by oxidative phosphorylation uncouplers and valinomycin. Cytoplasmic l -threonine does not leak from the cell, but bacteria are capable of exchanging exogenous l -threonine for its intracellular counterpart.  相似文献   

7.
The growth characteristics of a chemostat culture of the obligate methylotrophic bacterium Methylobacillus flagellatum have been determined. Steady-state cultures growing at a rate of 0.73-0.74 h(-1), equal to the maximal growth rate, were obtained under oxyturbidostat cultivation conditions. The response of a chemostat culture to a pulse increase of methanol concentration was studied. It was shown that slow and rapidly growing cultures of M. flagellatum responded differently to pulse methanol addition. The growth characteristics of slow-growing cultures decreased after methanol addition compared to those of stationary chemostat cultures. The growth characteristics of rapidly growing cultures were practically unchanged with and without pulse methanol addition.  相似文献   

8.
We present a refined genetic map of the obligate methylotroph Methylobacillus flagellatum. New, Hfr (high-frequency-of-transfer) donors, and pulsed-field gel electrophoresis, were used to determine that M.␣flagellatum contains one ∼3.1-Mb circular chromosome, and no plasmids. A correlation between time-of-entry units and DNA length was established. Using in vivo and in vitro cloning, and sequencing, a number of new genetic markers were identified and mapped; in addition, the nature of some of the previously mapped markers was elucidated. Received: 11 August 1997 / Accepted: 11 December 1997  相似文献   

9.
Cells of obligate methylotrophic Gram-negative bacterium Methylobacillus flagellatum KT which can only grow on methanol and methylamine media possess three different carriers mediating uptake of methylamin depending on growth conditions. All three uptake systems are energy-dependent, the methylamine uptake was inhibited by oxidative phosphorylation uncoupler and respiratory inhibitors. The first active transport system for methanol in the cells of obligate methylotroph was also demonstrated. The parameters of this system were measured, their dependence on energy, presence of respiratory inhibitors and uncoupler was shown.Abbreviations CCCP Carbonyl cyanide p-(trichloromethoxy)-phenylhydrazone - DCCD N,N-dicyclohexyl-carbodiimide  相似文献   

10.
The cryIVB gene from a new isolate of Bacillus thuringiensis var israelensis was cloned and sequenced. Two nucleotide replacements resulted in changing Asp385-Thr386 to Glu385-Ser386 were found in comparison with the previously sequenced cryIVB gene. Two genetic constructions were designed for expression of cryIVB in the obligate methylotroph Methylobacillus flagellatum. In the first construction, cryIVB was cloned under the strong inducible lac promoter and contained original ribosome binding site and 150 bp of 5′ transcribed but untranslated region. In the second construct, the first five codons of the lacZ gene were fused to the second codon of the cryIVB gene. Both E. coli and M. flagellatum harboring both constructs were toxic to insect larvae of Anopheles stephensi and Aedes aegypti. However, the toxicity of the methylotroph was about 450 times less. This study is the first attempt to use methylotrophs as an insecticidal endotoxin producer. Journal of Industrial Microbiology & Biotechnology (2000) 24, 14–18. Received 02 April 1999/ Accepted in revised form 17 August 1999  相似文献   

11.
Abstract Pyrroloquinoline quinone is a prosthetic group of bacterial methanol dehydrogenases as well as some alcohol and glucose dehydrogenases. Genes involved in pyrroloquinoline quinone production have previously been cloned from the representatives of the α and γ subdivisions of the Proteobacteria. We report identification and the sequence of the pqqDGC gene cluster in the obligate methylotroph, Methylobacillus flagellatum , which belongs to the β subdivision. The deduced products of the pqq genes from M. flagellatum appear to be more similar to their counterparts from non-methylotrophic species of the γ subdivision than to a facultative methylotroph of the a subdivision. A non-polar mutation in pqqG was constructed and resulted in a strain impaired in growth on methanol. This mutant accumulated a detectable amount of intracellular pyrroloquinoline quinone, but in contrast to the wild type, did not excrete pyrroloquinoline quinone into the culture medium. The possible role of PqqG is discussed.  相似文献   

12.
The obligate methylotroph Methylobacillus flagellatum was grown in the presence of different ammonium concentrations and the regulation of the enzymes associated with ammonium assimilation was investigated in steady-state and transient growth regimes. As the medium changed from C-limitation to dual C/N- and finally to N-limitation, the culture passed through three definite growth phases. The NADP+-dependent glutamate dehydrogenase (GDH) was present under ammonium limitation of the culture growth (at 2 mmol l-1 of ammonium in the growth medium) and increased in response to an increase in nitrogen availability. Glutamine synthetase (GS) and glutamate synthase (GOGAT) activities were negligible during C- and C/N-limitation. In N-limited cells the GOGAT activity increased as the dilution rate increased up to 0.35 h-1, and then sharply dropped. In the N-sufficient cultures both NAD+- and NADP+-dependent isocitrate dehydrogenase (NAD-ICDH and NADP-ICDH) activities were up-regulated as dilution rate increased, but in the N-limited culture the NAD-ICDH activity was up-regulated whereas NADP-ICDH one was down-regulated. Pulse additions of ammonium and methanol demonstrated the coordinate regulation of the GDH and ICDHs activities. When pulses were added to the C/N-limited cultures, there was an immediate utilization of the nutrients, resulting in an increase in biomass; at the same time the GDH and ICDH activities increased and the GS and GOGAT activities decreased. When the same ammonium/methanol pulse was added into the N-limited culture, there was a 3-hours delay in the culture response, after which the substrates were utilized at rates close to the ones shown by the C/N-limited culture after the analogous pulse.  相似文献   

13.
This report represents the first demonstration of degradation of intracellular protein in the obligate methylotroph, Methylophilus methylotrophus. Proteolysis in batch culture was followed by a pulse-chase protocol which included chloramphenicol during the chase period to prevent re-incorporation of the radio-label, l-[4,5-3H] isoleucine. Starvation for a nitrogen source mildly stimulated proteolysis whereas starvation for the carbon source (0.5% v/v methanol) inhibited proteolysis by over 50%. Respiratory inhibitors (e.g. 2,4-DNP) caused a rapid decline in both intracellular ATP concentration and protein catabolism. Proteins synthesized after the addition of methanol (5% v/v) and ethanol (5% v/v) to the growth medium were subject to rapid degradation. Breakdown of abnormal proteins generated by treatment with dihydrostreptomycin and puromycin was also inhibited by inhibitors of respiration and deprivation of carbon source. The stability of an heterologous gene product, interferon -2, was also investigated; loss of immunoreactivity was reduced in the absence of methanol but not prevented.  相似文献   

14.
Strom  E. V.  Dinarieva  T. Yu.  Netrusov  A. I. 《Microbiology》2004,73(2):124-128
The cbo-type oxidase of Methylobacillus flagellatus KT was purified to homogeneity by preparative native gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cytochrome cbo with a pH optimum of 8.3. With TMPD as an electron donor for the cbo-type oxidase, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and only ascorbate. The kinetic constants determined at pH 7.0 were as follows: oxidation by the enzyme of reduced TMPD was characterized by K M = 0.86 mM and V max = 1.1 mol O2/(min mg protein), and oxidation of reduced horse heart cytochrome c was characterized by K M = 0.09 mM and V max = 0.9 mol O2/(min mg protein). Cyanide inhibited ascorbate/TMPD–oxidase activity (K i = 4.5–5.0 M). The soluble cytochrome c H (12 kDa), partially purified from M. flagellatus KT, was found to serve as a natural electron donor for the cbo-type oxidase.  相似文献   

15.
Summary Biosynthetic preparation of2H- and13C- labeled amino acids was studied using a leucine-producing mutant of the obligate methylotroph,Methylobacillus flagellatum. The strain was cultivated in various media containing13C- or2H-analogs of methanol. The total protein from each experiment was subjected to acid hydrolysis and converted into a mixture of dansyl amino acid methyl esters. The samples of excreted leucine were converted into methyl esters of dansyl and benzyloxycarbonyl derivatives. Electron impact mass spectrometry was performed to detect stable isotope enrichment of the amino acids. According to the mass spectrometric analysis it is feasible to use methylotrophic microorganisms for the preparation of2H- and13C- analogs of amino acids by labeled methanol bioconversion; the excreted amino acids can be convenient for express analysis as an indicator of isotopic enrichment of the total protein. The data obtained testified to a high efficiency of dansyl derivatization for mass spectrometric analysis of complex amino acid mixtures.  相似文献   

16.
The regulation of methanol metabolism in Nocardia sp. 239 was investigated. Growth on mixtures of glucose or acetate plus methanol in batch cultures resulted in simultaneous utilization of the substrates. The presence of glucose, but not of acetate, repressed synthesis of the ribulose monophosphate (RuMP) cycle enzymes hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), and methanol was used as an energy source only. Comparable results were obtained following addition of formaldehyde (fed-batch system) to a culture growing on glucose. The synthesis of the methanol dissimilatory and assimilatory enzymes in Nocardia sp. 239 thus appears to be controlled differently. Methanol and/or formaldehyde induce the synthesis of these enzymes, but under carbon-excess conditions their inducing effect on HPS and HPI synthesis is completely overruled by glucose, or metabolites derived from it. Repression of the synthesis of these RuMP cycle enzymes was of minor importance under carbon- and energy-limiting conditions in chemostat cultures. Addition of a pulse of glucose to a formaldehyde-limited (2.5 mmol l–1 h–1) fed-batch culture resulted in a decrease in the levels of several enzymes of methanol metabolism (including HPI), whereas the HPS levels remained relatively constant. Increasing HPS/HPI activity ratios were also observed with increasing growth rates in formaldehyde-limited chemostat cultures. The data indicate that additional mechanisms, the identity of which remains to be elucidated, are involved in controlling the levels of these C1-specific enzymes in Nocardia sp. 239.Abbreviations HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - RuMP ribulose monophosphate - FBP fructose-1,6-bisphosphate - PFK 6-phosphofructokinase  相似文献   

17.
The yeast Hansenula polymorpha was grown in a chemostat using either methanol or sorbitol as substrate or a mixture of both. Methanol alone could be utilized up to a dilution rate (D) of 0.18 h-1, and sorbitol allowed growth at D's higher than 0.52 h-1. In combination with sorbitol, methanol was completely utilized in the mixture even up to a D of 0.3 h-1, and partially utilized at higher D's, To elucidate the basis of methanol utilization at high D's, enzyme activities on the single substrates and on the substrate mixture were compared. At D's above 0.3 h-1 an increase of formate dehydrogenase activity was evident, an enzyme involved in the oxidation of methanol to carbon dioxide. It was concluded that at high D's large amounts of methanol were oxidized to generate energy. This was proved with 14C-methanol, and it was found that in the range of partial methanol utilization approximately 75% of methanol was converted to carbon dioxide and 25% incorporated into cell material.Abbreviation D dilution rate  相似文献   

18.
Frankia, the actinomycete partner in the nitrogenfixing symbiosis of certain woody non-legumes, has been shown to fix nitrogen in pure culture under aerobic conditions. The sensitivity of in vivo nitrogen-fixation (acetylene reduction) to oxygen tension in the gas phase was measured in short-term assays with two Frankia isolates designated ARI3 and CcI3. The carbon source utilized had an effect on the optimum O2 concentration for acetylene reduction. Cells utilizing an organic acid, e.g., propionate or pyruvate had maximum nitrogenase activity at an oxygen concentration of 15 to 20%. In contrast, cells respiring a sugar, e.g., trehalose or glucose, or endogenous reserves (glycogen or trehalose) had maximum acetylene reduction activity at 5 to 10% in the gas phase. Oxygen uptake kinetics showed that respiration in vesicle-containing cells utilizing trehalose had a biphasic response to oxygen concentration with a diffusion limited component at oxygen concentrations of 20 M to more than 300 M. These results suggested that trehalose was oxidized in the vesicles as well as in the vegetative hyphae. Oxygen concentration also had an effect on the trehalose-supported growth of cells (non nitrogenfixing, [+NH4Cl]). Cells grown with 5–10% O2 in the gas phase had a doubling time approximately half those grown with 20% O2 (atmospheric). Propionate-grown cells showed similar growth rates at the two oxygen tensions, and grew faster (almost 2x) than the trehalose cells at 5–10% O2. Trehalose also supported approximately 40% lower rates of oxygen uptake than propionate in vesicle-containing cells.  相似文献   

19.
Procedures for the purification of an aldehyde dehydrogenase from extracts of the obligate methylotroph, Methylomonas methylovora are described. The purified enzyme is homogeneous as judged from polyacrylamide gel electrophoresis. In the presence of an artificial electron acceptor (phenazine methosulfate), the purified enzyme catalyzes the oxidation of straight chain aldehydes (C1-C10 tested), aromatic aldehydes (benzaldehyde, salicylaldehyde), glyoxylate, and glyceraldehyde. Biological electron acceptors such as NAD+, NADP+, FAD, FMN, pyridoxal phosphate, and cytochrome c cannot act as electron carriers. The activity of the enzyme is inhibited by sulfhydryl agents [p-chloromercuribenzoate, N-ethylmaleimide and 5,5-dithiobis (2-nitrobenzoic acid)], cuprous chloride, and ferrour nitrate. The molecular weight of the enzyme as estimated by gel filtration is approximately 45000 and the subunit size determined by sodium dodecyl sulfate-gel electrophoresis is approximately 23000. The purified enzyme is light brown and has an absorption peak at 410 nm. Reduction of enzyme with sodium dithionite or aldehyde substrate resulted in the appearance of peaks at 523 nm and 552 nm. These results suggest that the enzyme is a hemoprotein. There was no evidence that flavins were present as prosthetic group. The amino acid composition of the enzyme is also presented.Non-Standard Abbreviations PMS phenazine methosulfate - DCPIP 2,6-dichlorophenol indophenol - DEAE diethylaminoethyl  相似文献   

20.
Chromatium vinosum DSM 185 was grown in continuous culture at a constant dilution rate of 0.071 h-1 with sulfide as the only electron donor. The organism was subjected to conditions ranging from phosphate limitation (S R-phosphate=2.7 M and S R-sulfide=1.8 mM) to sulfide limitation (S R-phosphate=86 M and S R-sulfide=1.8 mM). At values of S R-phosphate below 7.5 M the culture was washed out, whereas S R-phosphate above this value resulted in steady states. The saturation constant (K ) for growth on phosphate was estimated to be between 2.6 and 4.1 M. The specific phosphorus content of the cells increased from 0.30 to 0.85 mol P mg-1 protein with increasing S R-phosphate. The specific rate of phosphate uptake increased with increasing S R-phosphate, and displayed a non-hyperbolic saturation relationship with respect to the concentration of phosphate in the inflowing medium. Approximation of a hyperbolic saturation function yielded a maximum uptake rate (V max) of 85 nmol P mg-1 protein h-1, and a saturation constant for uptake (K t) of 0.7 M. When phosphate was supplied in excess 8.5% of the phosphate taken up by the cells was excreted as organic phosphorus at a specific rate of 8 nmol P mg-1 protein h-1.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate; max, maximum specific growth rate - maximum specific growth rate if the substrate were not inhibitory - K saturation constant for growth on phosphate - V max maximum rate of phosphate uptake - K i saturation constant for phosphate uptake - K i inhibition constant for growth in the presence of sulfide - S R concentration of substrate in the inflowing medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号