首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abscisic acid enhances aggregation and fusion of phospholipid vesicles   总被引:1,自引:0,他引:1  
The plant hormone abscisic acid (ABA) is shown to enhance the aggregation and fusion of small unilamellar lipid vesicles composed of 80 mol% dimyristoylphosphatidylcholine (DMPC) and 20 mol% dimyristoylphosphatidylcholine (DMPE). Aggregation and fusion did not occur with single component (100 mol%) DMPC vesicles. Fusion was followed by two fundamentally different techniques, fluorescence resonance energy transfer which monitors intermixing of bilayers and ANTS-DPX which monitors intermixing of the sequestered aqueous interiors. It is suggested that a previously unreported role of ABA may be as a membrane fusagen.  相似文献   

2.
Effect of spectrin from human erythrocytes on structure properties of lipid bilayers formed from a mixture of phosphatidylethanolamine/phosphatidylserine (PE/PS) and/or phosphatidylethanolamine/phosphatidylcholine (PE/PC) was studied with the use of fluorescence and microcalorimetric methods. Spectrin did not affect the order parameter of lipids in PE/PS vesicles. However, spectrin binding to liposomes did influence temperature, half-width and enthalpy of phase transitions in mixtures of dimyristoylphosphatidylethanolamine (DMPE) and dimyristoylphosphatidylcholine (DMPC), and this effect was dependent on DMPE to DMPC weight ratio. A change in miscibility of the components in the presence of spectrin was observed and it might be due to spectrin-PE interactions.  相似文献   

3.
Density-dependent spectrin binding to dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine (DMPC/DMPE) small uni-lamellar vesicles (SUVs) has been directly evaluated in this work from the increase in the extent of quenching of the tryptophan fluorescence of spectrin at two different temperatures, above and below the main phase transition temperatures (Tm). Results from the binding studies of spectrin to phospholipid SUVs indicated that the binding dissociation constant Kd, increased from 45 +/- 7 nM in pure DMPC SUVs to 219 +/- 20 nM in DMPC/DMPE (50:50) SUVs, both in the gel and liquid crystalline phase. However, in pure DMPE SUVs the Kd decreased drastically to 0.7 +/- 0.2 nM in the gel phase at 18 degrees C and to 2.6 +/- 0.7 nM in the fluid phase at 55 degrees C indicating a high affinity binding of spectrin for the bilayer-forming DMPE. The maximum extent of phospholipid-induced quenching and the number of spectrin molecules associated with one SUV particle, evaluated in the present work, led to a model in DMPC/DMPE bilayer membranes indicating the PE-binding site of spectrin to localize at one of the terminal domains of the dimeric spectrin. A direct evidence of the localization of the PE-binding site at one of the terminal ends of the spectrin dimer also came from electron microscopic observation in fluid membranes made of bovine brain PE.  相似文献   

4.
Density-dependent spectrin binding to dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine (DMPC/DMPE) small uni-lamellar vesicles (SUVs) has been directly evaluated in this work from the increase in the extent of quenching of the tryptophan fluorescence of spectrin at two different temperatures, above and below the main phase transition temperatures (Tm). Results from the binding studies of spectrin to phospholipid SUVs indicated that the binding dissociation constant Kd, increased from 45±7 nM in pure DMPC SUVs to 219±20 nM in DMPC/DMPE (50:50) SUVs, both in the gel and liquid crystalline phase. However, in pure DMPE SUVs the Kd decreased drastically to 0.7±0.2 nM in the gel phase at 18°C and to 2.6±0.7 nM in the fluid phase at 55°C indicating a high affinity binding of spectrin for the bilayer-forming DMPE. The maximum extent of phospholipid-induced quenching and the number of spectrin molecules associated with one SUV particle, evaluated in the present work, led to a model in DMPC/DMPE bilayer membranes indicating the PE-binding site of spectrin to localize at one of the terminal domains of the dimeric spectrin. A direct evidence of the localization of the PE-binding site at one of the terminal ends of the spectrin dimer also came from electron microscopic observation in fluid membranes made of bovine brain PE.  相似文献   

5.
W C Wimley  T E Thompson 《Biochemistry》1991,30(6):1702-1709
The rates of spontaneous interbilayer and transbilayer exchange of [3H]dimyristoylphosphatidylcholine ([3H]DMPC) were examined in DMPC and DMPC/dimyristoylphosphatidylethanolamine (DMPE) large unilamellar vesicles in the liquid-crystalline-, gel-, and mixed-phase states. DMPC desorption rates from either gel or liquid-crystalline phases containing DMPE are very similar to the corresponding rates from pure DMPC gel or liquid-crystalline phases. This is not the case for DMPC desorption from distearoylphosphatidylcholine (DSPC)-containing gel phases, where the desorption rates are significantly faster than from a pure DMPC gel phase [Wimley, W. C., & Thompson, T. E. (1990) Biochemistry 29, 1296-1303]. We proposed that the DMPC/DSPC behavior results from packing defects in gel phases composed of both DMPC and DSPC molecules because of the four-carbon difference in the acyl chain lengths of the two species. The present results strongly support this hypothesis because no such anomalous behavior is observed in DMPC/DMPE, which is similar to DMPC/DSPC in phase behavior but does not have the chain length difference. The inclusion of 10-30 mol % DMPE in DMPC bilayers was also found to have a significant effect on the rate of transbilayer movement (flip-flop) of [3H]DMPC in the liquid-crystalline phase. Between 10 and 30 mol % DMPE, flip-flop of DMPC is slowed by at least 10-fold relative to flip-flop in DMPC bilayers, and the entropy and enthalpy of flip-flop activation are both substantially decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Methylation of inorganic arsenic has been regarded as a detoxification mechanism because its metabolites monomethylarsonic acid (MMA(v)) and dimethylarsinic acid (DMA(v)) are supposed to be less toxic than inorganic arsenite and arsenate. In recent years, however, this interpretation has been questioned. Additionally, there are insufficient reports concerning the effects of arsenic compounds on cell membrane structure and functions. With the aim to better understand the molecular mechanisms of the interaction of MMA(v) and arsenate with cell membranes, we have utilized molecular models consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of many cell membranes including that of the human erythrocyte. The capacity of MMA(v) and arsenate to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction; the modifications of their thermotropic behavior were followed by differential scanning calorimetry (DSC), while DMPC large unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. It was found that MMA(v) and arsenate did not structurally perturb DMPC bilayers; however, DMPE bilayers did suffer structural perturbations by MMA(v). DSC measurements also revealed that DMPE's thermotropic properties were significantly affected by arsenicals, where MMA(v) was more effective than arsenate, whilst only slight modifications were observed in the case of DMPC-MMA(v) system.  相似文献   

7.
We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.  相似文献   

8.
The proteolytic activity of an aspartyl protease of Mucor miehei was correlated with the adsorption of the protease to lipid vesicles. It was observed that the presence of phosphatidylethanolamines (PE's) in the membrane increased the enzyme activity in a 20% in the gel phase and 10% in the fluid phase. The effects of protease on the surface pressure of monolayers composed by dioleoylphosphatidylcholine (DOPC), dimyristoylphosphatidylcholine (DMPC), dimyristoyl phosphatidylethanolamine (DMPE) were measured at constant temperature as a function of the surface pressure. At low surface pressures, the major changes were induced by protease on DOPC and DMPC monolayers. However, the effect were much lower when the monolayer was composed by DMPE. The low hydration and strong head-head interaction between the phosphates and the amine groups of adjacent PE's would result in an area per molecule much lower in PE than in phosphatidylcholine (PC) in concordance with the lower penetration in PE. Protease adsorption on PE membranes increases the proteolytic activity in which condition is less susceptible to inhibition by pepstatin. However, PC's do not alter the enzyme activity being the action of inhibitor unaffected.  相似文献   

9.
The interaction of the local anesthetic benzocaine with the human erythrocyte membrane and molecular models is described. The latter consisted of isolated unsealed human erythrocyte membranes (IUM), large unilamellar vesicles (LUV) of dimyristoylphospatidylcholine (DMPC), and phospholipid multilayers of DMPC and dimyristoylphospatidyletanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Optical and scanning electron microscopy of human erythrocytes revealed that benzocaine induced the formation of echinocytes. Experiments performed on IUM and DMPC LUV by fluorescence spectroscopy showed that benzocaine interacted with the phospholipid bilayer polar groups and hydrophobic acyl chains. X-ray diffraction analysis of DMPC confirmed these results and showed that benzocaine had no effects on DMPE. The effect on sodium transport was also studied using the isolated toad skin. Electrophysiological measurements indicated a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of benzocaine, reflecting inhibition of active ion transport.  相似文献   

10.
W C Wimley  T E Thompson 《Biochemistry》1991,30(17):4200-4204
It has previously been demonstrated that lipid exchange between phosphatidylcholine vesicles, at higher concentrations, is characterized by a second-order concentration-dependent exchange process in addition to the first-order process operative at lower concentrations (Jones, J. D., & Thompson, T. E. (1989) Biochemistry 28, 129-134). Furthermore, it was demonstrated that the second-order process occurs as a result of an enhancement of the first-order desorption process, possibly resulting from attractive interactions between a potentially desorbing lipid molecule and a transiently apposed bilayer (Jones, J. D., & Thompson, T. E. (1990) Biochemistry 29, 1593-1600). In this work we have studied the exchange of [3H]dimyristoylphosphatidylcholine (DMPC) between large vesicles of the compositions 100% DMPC, 70/30 (mol/mol) DMPC/dimyristoylphosphatidylethanolamine (DMPE), and 68.25/30/1.75 (mol/mol/mol) DMPC/DMPE/dimyristoylphosphatidylglycerol (DMPG). The second-order exchange process is enhanced by 100-fold or more in vesicles containing 30 mol % DMPE relative to 100% DMPC and is reduced or eliminated by the addition of 1.75% of the anionic lipid DMPG. These effects can be achieved by alterations in the equilibrium bilayer separation of 5 A or less. The results are in accord with the model of Jones and Thompson and indicate that relatively low concentrations of PE in a PC bilayer can have significant effects on bilayer surface properties and on potential interactions between bilayers.  相似文献   

11.
This study was aimed at elucidating the molecular mechanisms of the interaction of the antitumor alkylphospholipid drug miltefosine with human erythrocytes (RBC) and molecular models of its membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray results showed that the drug interacted with DMPC multilayers; however, no effects on DMPE were detected. The experimental findings obtained by differential scanning calorimetry (DSC) indicated that miltefosine altered the thermotropic behavior of both DMPC and DMPE vesicles. Fluorescence spectroscopy evidenced an increase in the fluidity of DMPC vesicles and human erythrocyte membranes. Scanning electron microscopy (SEM) observations on human erythrocytes showed that miltefosine induced morphological alterations to RBC from its normal biconcave to an echinocyte type of shape. These results confirm that miltefosine interacts with the outer moiety of the human erythrocyte membrane affecting the cell morphology.  相似文献   

12.
The fluorescence decay of 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) was used to study micro-heterogeneity of 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC) liposomes and to characterize the effect of phosphatidic acid on the correlation between fluorescence microheterogeneity and membrane permeability. The fluorescence decay, measured using multifrequency phase fluorometry, has been analyzed either by using a model of discrete exponential components or a model of continuous distribution of lifetime values. Both analyses have shown that TMA-DPH decay is characterized by two components: a long one of about 9 ns and a short one of about 5 ns. In the gel phase, at variance with previous DPH studies, the short component was associated with a large fractional intensity. The distributional analysis showed changes of lifetime values and width in correspondence to the calorimetric transitions. The presence of egg phosphatidic acid increased both long lifetime values and distributional width. The use of TMA-DPH as a probe to evaluate membrane heterogeneity using the distributional width is discussed. The effect of phosphatidic acid on the membrane surface and in the hydrophobic core has been related to its structural properties and to its role in water penetration.  相似文献   

13.
Small unilamellar vesicles (SUVs) formed from a mixture of dimyristoylphosphatidylcholine (zwitterionic lipid with bulkier headgroup) and dimyristoylphosphatidylglycerol (anionic lipid with relatively smaller headgroup) allows better modulation of the physical properties of lipid bilayers compared to SUVs formed by a single type of lipid, providing us with a better model system to study the effect of membrane parameters on the partitioning of small molecules. Membrane parameter like packing of the vesicles is more pronounced in the gel phase and hence the study was carried out in the gel phase. Mixed vesicles formed from DMPG and DMPC with the mole percent ratio of 100:0, 90:10 and 80:20 were used for this study. As examples of polar solutes, piroxicam and meloxicam, two Non Steroidal Anti-inflammatory Drugs (NSAIDs) were chosen. The pH was adjusted to 2.8 in order to eliminate the presence of anionic forms of the drugs that would not approach the vesicles containing negatively charged DMPG (50% deprotonated at pH 2.8). Surface potential measured by using TNS (2,6-p-toluidinonaphthalene sulfonate, sodium salt) as surface charge sensitive probe showed no significant changes in the surface electrostatics in increasing DMPC content from 0 to 20%. Transmission electron microscopy (TEM) was used to characterize SUVs of different composition at pH 2.8. The average diameter of the mixed vesicles was found to be smaller than that formed by DMPG and DMPC alone. Partition coefficient (K(P)) of piroxicam and meloxicam was measured using intrinsic fluorescence of these molecules. K(P) value of piroxicam decreases with increase in DMPC content whereas it increases with DMPC content in case of meloxicam. This anomalous behavior of partitioning is unexpected since there was no significant change in surface pH of the vesicles and has been explained in terms of lipid packing and water penetration in the lipid bilayer.  相似文献   

14.
A microscopic study has allowed the analysis of modifications of various shapes acquired by phospholipid vesicles during a hydrostatic pressure treatment of up to 300 MPa. Giant vesicles of dimyristoylphosphatidylcholine / phosphatidylserine (DMPC/PS) prepared at 40°C mainly presented a shape change resembling budding during pressure release. This comportment was reinforced by the incorporation of 1,2-dioleyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or by higher temperature (60°C) processing. The thermotropic main phase transition (Lα to Pβ′) of the different vesicles prepared was determined under pressure through a spectrofluorimetric study of 6-dodecanoyl-2-dimethylamino-naphtalene (Laurdan) incorporated into the vesicles’ bilayer. This analysis was performed by microfluorescence observation of single vesicles. The phase transition was found to begin at about 80 MPa and 120 MPa for DMPC/PS vesicles at, respectively, 40°C and 60°C. At 60°C the liquid-to-gel transition phase was not complete within 250 MPa. Addition of DMPE at 40°C does not significantly shift the onset boundary of the phase transition but extends the transition region. At 40°C, the gel phase was obtained at, respectively, 110 MPa and 160 MPa for DMPC/PS and DMPC/PS/DOPE vesicles. In comparing volume data obtained from image analysis and Laurdan signal, we assume the shape change is a consequence of the difference between lateral compressibility of the membrane and bulk water. The phase transition contributes to the membrane compression but seems not necessary to induce shape change of vesicles. The high compressibility of the Lα phase at 60°C allows induction on DMPC/PS vesicles of a morphological transition without phase change.  相似文献   

15.
Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures.  相似文献   

16.
We measured the influence of saturated and unsaturated free fatty acids on the permeability and partition of ions into 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers. The bilayer permeability was measured using the depletion of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphatidylethanolamine (N-NBD-PE) fluorescence as a result of its reduction by dithionite. We observed a distinct increase of dithionite permeability at the main gel-fluid phase transition of DMPC. When vesicles were formed from a mixture of DMPC and oleic acid, the membrane permeability at the phase transition was reduced drastically. Stearic acid and methyl ester of oleic acid have little effect. Similar results in the quenching of pyrene-PC in DMPC vesicles by iodide were obtained. Again, the increase of iodide partition into the lipid phase at the main phase transition of DMPC was abolished by the addition of unsaturated free fatty acids. Free fatty acids, in concentrations up to 5 mol%, do not abolish DMPC phase transition when measured by differential scanning calorimetry. It seems that unsaturated, but not saturated, free fatty acids reduce the lipid bilayer permeability to dithionite and iodide ions at the main phase transition of DMPC, without altering the thermodynamic properties of the bilayer.  相似文献   

17.
The dipole potential and the area changes induced by trehalose on dimyristoyl phosphatidylcholine (DMPC), 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (dietherPC), dimyristoyl phosphatidylethanolamine (DMPE), 1,2-di-O-tetradecyl-sn-glycero-3-phosphoethanolamine (dietherPE) monolayers have been studied at different temperatures. The insertion of trehalose into DMPC monolayers in the fluid and gel states requires of the presence of carbonyl groups. The area increase observed at 0.15M trehalose is congruent with the decrease in the dipole potential. However, in dietherPC, in which trehalose does not affect the area, a decrease in the dipole potential is also observed. This is interpreted as a result of the displacement of water from the phosphate groups exposed to the aqueous phase. In DMPE, trehalose also decreases the dipole potential without affecting the area of saturated monolayers and in dietherPE no effect on dipole potential and area was observed. It is concluded that the spacer effect of trehalose depends on the specific interaction with CO, which is modulated by the strength of the interaction of the PO groups with lateral NH groups. However, it is not the only contribution to the dipole potential decrease.  相似文献   

18.
Experimental results indicate a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of proparacaine to isolated toad skin, which may reflect an inhibition of the active transport of ions. This finding was explained on the basis of the results obtained from membrane models incubated with proparacaine. These consisted of human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), phospholipid multilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively, and in large unilamellar vesicles (LUV) of DMPC X-ray diffraction showed that proparacaine interaction with DMPC and DMPE bilayers perturbed both structures, especially DMPC. This result, confirmed by fluorescence spectroscopy of DMPC LUV at 18 degrees C, demonstrated that the local anesthetic (LA) could interact with the lipid moiety of cell membranes. However, effects observed by scanning electron microscopy (SEM) of human erythrocytes and by fluorescence spectroscopy of IUM might also imply proparacaine-protein interactions. Thus, the LA may alter epitheial sodium channels through interaction with the lipid matrix and with channel protein residues.  相似文献   

19.
We have measured the phase behavior of mixed dipentadecanoylphosphatidylglycerol (DC15PG)/dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUV) in the presence of saturating (greater than 98% occupancy of binding sites) concentrations of bovine prothrombin fragment 1 and 5 mM Ca2+. Binding of fragment 1 in the presence of Ca2+ was verified by an increase in 90 degrees light scattering. Only in the cases of DC15PG/DMPC SUV below their phase transition and of pure DMPC SUV were such light scattering measurements not reversible upon addition of ethylenediaminetetraacetic acid to complex Ca2+. Phase-behavior changes of DC15PG/DMPC SUV as monitored by diphenylhexatriene fluorescence anisotropy occurred in concert with the binding of fragment 1. The major effects of peptide binding on SUV phase behavior were to raise the phase-transition temperature by 2-15 degrees C, depending on vesicle composition, and, in general, to make the phase diagram for these small vesicles closely resemble that of large vesicles. No evidence was obtained for the existence of lateral membrane domains with distinct compositions induced by the binding of prothrombin fragment 1 plus Ca2+. Surprisingly, fragment 1 without Ca2+ also altered the phase behavior of DC15PG/DMPC SUV. Most striking was the effect of fragment 1 (with or without Ca2+) on DMPC SUV phase behavior. Freeze-fracture electron microscopy demonstrated that pure DMPC vesicles were induced to fuse in the presence of fragment 1, while vesicles containing DC15PG remained intact. The rate of DMPC SUV fusion (followed by 90 degrees light scattering) increased with increasing fragment 1 concentration but was not saturable up to 40 microM fragment 1, suggesting a weak, nonspecific interaction between fragment 1 and the neutral phospholipid vesicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Fourier Transform Infrared spectroscopy (FTIR) was used to determine the phase transition temperature of whole Saccharomyces cerevisiae W303-1 A cells as a function of Aw in binary water-glycerol media. A phase transition occurred at 12 degrees C in water, at 16.5 degrees C at Aw=0.75, and at 19.5 degrees C at Aw=0.65. The temperature ranges over which transition occurred increased with decreasing Aw. A total lipid extract of the plasma membranes isolated from S. cerevisiae cells was also studied, with a phase transition temperature determined at 20 degrees C in pure water and at 27 degrees C in binary water-glycerol solutions for both Aw levels tested. The pure phospholipids dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) and three binary mixtures of these phospholipids (percentage molar mixtures of DMPC/DMPE of 90.5/9.5, 74.8/25.2, and 39.7/60.3) were studied. For DMPC, there was no influence of Aw on the phase transition temperature (always 23 degrees C). On the other hand, the phase transition temperature of DMPE increased with decreasing Aw for the three aqueous solutions tested (glycerol, sorbitol and sucrose), from 48 degrees C in water, to 64 degrees C for a solution at Aw=0.67. For the DMPC/DMPE mixtures, transitions were found intermediate between those of the two phospholipids, and a cooperative state was observed between species at the gel and at the fluid phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号