首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most classical models for the movement of organisms assume that all individuals have the same patterns and rates of movement (for example, diffusion with a fixed diffusion coefficient) but there is empirical evidence that movement rates and patterns may vary among different individuals. A simple way to capture variation in dispersal that has been suggested in the ecological literature is to allow individuals to switch between two distinct dispersal modes. We study models for populations whose members can switch between two different nonzero rates of diffusion and whose local population dynamics are subject to density dependence of logistic type. The resulting models are reaction–diffusion systems that can be cooperative at some population densities and competitive at others. We assume that the focal population inhabits a bounded region and study how its overall dynamics depend on the parameters describing switching rates and local population dynamics. (Traveling waves and spread rates have been studied for similar models in the context of biological invasions.) The analytic methods include ideas and results from reaction–diffusion theory, semi-dynamical systems, and bifurcation/continuation theory.  相似文献   

2.
3.
The predictions of epidemic models are remarkably affected by the underlying assumptions concerning host population dynamics and the relation between host density and disease transmission. Furthermore, hypotheses underlying distinct models are rarely tested. Domestic cats (Felis catus) can be used to compare models and test their predictions, because cat populations show variable spatial structure that probably results in variability in the relation between density and disease transmission. Cat populations also exhibit various dynamics. We compare four epidemiological models of Feline Leukaemia Virus (FeLV). We use two different incidence terms, i.e. proportionate mixing and pseudo-mass action. Population dynamics are modelled as logistic or exponential growth. Compared with proportionate mixing, mass action incidence with logistic growth results in a threshold population size under which the virus cannot persist in the population. Exponential growth of host populations results in systems where FeLV persistence at a steady prevalence and depression of host population growth are biologically unlikely to occur. Predictions of our models account for presently available data on FeLV dynamics in various populations of cats. Thus, host population dynamics and spatial structure can be determinant parameters in parasite transmission, host population depression, and disease control.  相似文献   

4.
Although the causes of population extinction are well understood, the speed at which populations decline to extinction is not. A testable, counter-intuitive prediction of stochastic population theory is that, on average, for any interior interval of the domain of biologically attainable population sizes, the expected duration of increase equals the expected duration of decline. Here we report the first empirical tests of this hypothesis. Using data from two experiments in which replicate populations of Daphnia magna were observed to go extinct under different experimental conditions, we failed to reject the null hypothesis of no difference between the growth and decline phases in populations under constant conditions and conditions with modest environmental variability, but find strong evidence to reject equal first passage time in highly variable environments. These results confirm the prediction of equal passage times entailed by diffusion models of population dynamics, supporting continued application in both population theory and conservation decision making under the restricted conditions where the approximation can be expected to hold.  相似文献   

5.
Plasmid gene product accumulation in a cell population depends on the fraction of plasmid-containing cells and the distribution of single-cell plasmid content. These important population properties have been related to plasmid replication regulation and kinetics and to plasmid segregation rules at the single-cell level using population balance mathematical models. Budding yeast populations are considered in detail because of the practical potential of yeast host-vector systems and because of the model complications introduced by the asymmetric division pattern observed for Saccharomyces cerevisiae at all but the largest growth rates. Solutions are presented for several different reasonable models of plasmid replication and segregation. The results offer potential for identification of important qualitative features of yeast plasmid replication and of model parameter values from average and segregated experimental data on yeast populations.  相似文献   

6.
Bacterial high-copy-number (hcn) plasmids provide an excellent model to study the underlying physical mechanisms of DNA segment segregation in an intracellular context. Using two-color fluorescent repressor-operator systems and a synthetic repressible replication origin, we tracked the motion and segregation of single hcn plasmid molecules in individual cells. The plasmid diffusion dynamics revealed between-plasmid temporal associations (clustering) as well as entropic and elastic recoiling forces in the confined intracellular spaces outside of nucleoids. These two effects could be effectively used in models to predict the heterogeneity of segregation. Additionally, the motile behaviors of hcn plasmids provide quantitative estimates of entropic exclusion strength and dynamic associations between DNA segments. Overall, this study utilizes a, to our knowledge, novel approach to predict the polymer dynamics of DNA segments in spatially confined, crowded cellular compartments as well as during bacterial chromosome segregation.  相似文献   

7.
Summary The effect of cross-population pressure on the Volterra type dynamics for two competing species is investigated. On the basis of cross-diffusion induced instability, spatial segregation is studied. Spatially discrete models are also discussed. It is shown that this effect has a tendency to enhance the stability assuring coexistence of species. In continuous and discrete cases, time-dependent segregation processes are studied numerically.  相似文献   

8.
NVT ensemble molecular dynamics (MD) simulation has been applied to calculate the self-diffusion coefficients of carbon dioxide and the tracer diffusion coefficients of naphthalene in supercritical carbon dioxide. The simulation was carried out in the pressure range from 8 to 40 MPa. The elementary physical model proposed by Harris and Yung was adopted for carbon dioxide and some approximation models were used for naphthalene. The systems of MD simulation for carbon dioxide consist of 256 particles. One naphthalene molecule was added for carbon dioxide+naphthalene system. The system can be assumed to be an infinite dilution condition for carbon dioxide+naphthalene system and the mutual diffusion coefficients are equal to the tracer diffusion coefficients of naphthalene. The self-diffusion coefficients of carbon dioxide and the tracer diffusion coefficients of naphthalene in supercritical carbon dioxide can be calculated by mean square displacement. The calculated results of diffusion coefficients showed good agreement with the experimental data without adjustable parameters.  相似文献   

9.
This paper studies population models which have the following three ingredients: populations are divided into local subpopulations, local population dynamics are nonlinear and random events occur locally in space. In this setting local stochastic phenomena have a systematic effect on average population density and this effect does not disappear in large populations. This result is an outcome of the interaction of the three ingredients in the models and it says that stochastic models of systems of patches can be expected to give results for average population density that differ systematically from those of deterministic models. The magnitude of these differences is related to the degree of nonlinearity of local dynamics and the magnitude of local variability. These results explain those obtained from a number of previously published models which give conclusions that differ from those of deterministic models. Results are also obtained that show how stochastic models of systems of patches may be simplified to facilitate their study.  相似文献   

10.
Deterministic and stochastic models motivated by Salmonella transmission in unmanaged/managed populations are studied. The SIRS models incorporate three routes of transmission (direct, vertical and indirect via free-living infectious units in the environment). With deterministic models we are able to understand the effects of different routes of transmission and other epidemiological factors on infection dynamics. In particular, vertical transmission has little influence on this dynamics, whereas the higher the indirect (direct) transmission rate the greater the tendency to persistent oscillation (stable endemic states). We show that the sustained cycles are also prone to demographic effect, i.e., persistent oscillation becomes impossible in the managed case (in the sense of balanced recruitment and death rates) by comparing with results in unmanaged populations (exponential population dynamics). Further, approximations of quasi-stationary distributions are derived for stochastic versions of the proposed models based on a diffusion approximation to the infection process. The effect of transmission parameters on the ratio of mean to standard deviation of the approximating distribution, used to judge the validity of the approximations and the expected time until fade out of infection, is further discussed. We conclude that strengthening any route of transmission may or may not reduce the expected time to fade out of infection, depending on the population dynamics.  相似文献   

11.
A number of recent studies suggest that human and animal mobility patterns exhibit scale-free, Lévy-flight dynamics. However, current reaction-diffusion epidemics models do not account for the superdiffusive spread of modern epidemics due to Lévy flights. We have developed a SIR model to simulate the spatial spread of a hypothetical epidemic driven by long-range displacements in the infective and susceptible populations. The model has been obtained by replacing the second-order diffusion operator by a fractional-order operator. Theoretical developments and numerical simulations show that fractional-order diffusion leads to an exponential acceleration of the epidemic's front and a power-law decay of the front's leading tail. Our results indicate the potential of fractional-order reaction-diffusion models to represent modern epidemics.  相似文献   

12.
Engen S  Lande R  Saether BE 《Genetics》2005,170(2):941-954
Previous theories on the effective size of age-structured populations assumed a constant environment and, usually, a constant population size and age structure. We derive formulas for the variance effective size of populations subject to fluctuations in age structure and total population size produced by a combination of demographic and environmental stochasticity. Haploid and monoecious or dioecious diploid populations are analyzed. Recent results from stochastic demography are employed to derive a two-dimensional diffusion approximation for the joint dynamics of the total population size, N, and the frequency of a selectively neutral allele, p. The infinitesimal variance for p, multiplied by the generation time, yields an expression for the effective population size per generation. This depends on the current value of N, the generation time, demographic stochasticity, and genetic stochasticity due to Mendelian segregation, but is independent of environmental stochasticity. A formula for the effective population size over longer time intervals incorporates deterministic growth and environmental stochasticity to account for changes in N.  相似文献   

13.
Spatial ecoepidemic models, in which diseases affect interacting populations, are often explored through reaction-diffusion equations. However, cellular automata (CA) are a widely recognized tool for modelling spatial pattern formation that are broadly analagous to reaction diffusion equations, but provide greater flexibility in defining population dynamics. In this work we present a CA defined to mimic the prey–predators interactions while a pathogen is affecting, in turn, one population. We explore system equilibria, given different initial conditions and local interaction neighborhoods. Furthermore, in the various ecoepidemic systems considered we report the formation of waves and spirals: a key summary of how diseases may spread among individuals. Some inferences on the predators and infection eradication strategies are presented and supported by simulations results.  相似文献   

14.
1. Dispersal can be a major determinant of the distribution and abundance of animals, as well as a key mechanism linking behaviour to population dynamics, but progress in understanding dispersal has been hampered by the lack of a general framework for modelling dispersal. 2. This study tested the capacity of simple models to summarize and predict the lake-wide dispersal of an emerging cohort of young-of-the-year brook charr Salvelinus fontinalis, over 12 surveys conducted during a 2-month period. 3. The models are based on two types of dispersal kernel, the normal distribution from a simple diffusion process, and a Laplace distribution depicting exponential decay of the frequency of dispersers away from the point of origin. In all, four models were assessed: one-group diffusion (D1S) and exponential (E1S) models assuming homogeneous dispersal behaviour within the cohort, and two-group diffusion (D2S) and exponential (E2S) models accounting for intrapopulation differences in dispersal between sedentary and mobile individuals. 4. A rigorous cross-validation, based on calibrating the models to the distributions from the first two surveys only and then validating them on the remaining 10 distributions, was used to compare model predictions with observed values for five properties of the dispersal distributions: counts in individual shoreline sections; mean lateral displacement, variance and kurtosis of displacements; and the percentage of long-distance dispersers. 5. Substantial intrapopulation heterogeneity in dispersal behaviour was apparent: 83% of all individuals were estimated to be sedentary and the remainder mobile. Remarkably, the two-group exponential model E2S - calibrated to data from only two surveys conducted 3.5 and 8.5 days after the beginning of emergence - predicted reasonably well all properties of the spatial distribution of the cohort until the end of the study, 7 weeks later. 6. Standardized measures of mobility derived from simple models may lead to better understanding of population dynamics and improved management. Specifically, the ability to accurately predict long-distance dispersal may be critical to assessing population persistence and cohort strength whenever key habitats, such as refugia or productive areas supporting a large proportion of the cohort, are sparsely distributed or distant from the point of origin.  相似文献   

15.
Most ecological and epidemiological models describe systems with continuous uninterrupted interactions between populations. Many systems, though, have ecological disturbances, such as those associated with planting and harvesting of a seasonal crop. In this paper, we introduce host–parasite–hyperparasite systems as models of biological control in a disturbed environment, where the host–parasite interactions are discontinuous. One model is a parasite–hyperparasite system designed to capture the essence of biological control and the other is a host–parasite–hyperparasite system that incorporates many more features of the population dynamics. Two types of discontinuity are included in the models. One corresponds to a pulse of new parasites at harvest and the other reflects the discontinuous presence of the host due to planting and harvesting. Such discontinuities are characteristic of many ecosystems involving parasitism or other interactions with an annual host. The models are tested against data from an experiment investigating the persistent biological control of the fungal plant parasite of lettuce Sclerotinia minor by the fungal hyperparasite Sporidesmium sclerotivorum, over successive crops. Using a combination of mathematical analysis, model fitting and parameter estimation, the factors that contribute the observed persistence of the parasite are examined. Analytical results show that repeated planting and harvesting of the host allows the parasite to persist by maintaining a quantity of host tissue in the system on which the parasite can reproduce. When the host dynamics are not included explicitly in the model, we demonstrate that homogeneous mixing fails to predict the persistence of the parasite population, while incorporating spatial heterogeneity by allowing for heterogeneous mixing prevents fade-out. Including the host''s dynamics lessens the effect of heterogeneous mixing on persistence, though the predicted values for the parasite population are closer to the observed values. An alternative hypothesis for persistence involving a stepped change in rates of infection is also tested and model fitting is used to show that changes in some environmental conditions may contribute to parasite persistence. The importance of disturbances and periodic forcing in models for interacting populations is discussed.  相似文献   

16.
Abstract

The influence of solid-phase connectivity on size-exclusion partitioning and on diffusion of a dilute hard-sphere fluid in overlapping and nonoverlapping spheres models of porous media is investigated using molecular dynamics and Monte Carlo simulation techniques. Four models are examined, two of which are subject to constrained bicontinuity of the pore and solid phases and two in which the solid spheres in the assemblies are randomly distributed in space. It is shown that at moderate to high porosities, connected (bicontinuous) structures lead to a significant increase in the partition and diffusion coefficients when the particles of the pore fluid are of finite size. The consequences of solid phase connectivity are also clearly illustrated in the long-time decay of the velocity autocorrelation function (VACF) of the diffusing particles, particularly in the vicinity of the percolation threshold. Under these conditions the power law exponents on the long-time tail of the VACF are generally found to be higher in connected models than in random systems and the importance of this result is demonstrated using one of the scaling rules of percolation theory. The simulation results are also compared with the predictions of current theories of partitioning and diffusion in random sphere assemblies and, with reference to experimental data available from the literature, it is shown that bicontinuous models are better representations of real porous media.  相似文献   

17.
Antibiotic resistance in microbial communities reflects a combination of processes operating at different scales. In this work, we investigate the spatiotemporal dynamics of bacterial colonies comprised of drug-resistant and drug-sensitive cells undergoing range expansion under antibiotic stress. Using the opportunistic pathogen Enterococcus faecalis with plasmid-encoded β-lactamase, we track colony expansion dynamics and visualize spatial patterns in fluorescently labeled populations exposed to antibiotics. We find that the radial expansion rate of mixed communities is approximately constant over a wide range of drug concentrations and initial population compositions. Imaging of the final populations shows that resistance to ampicillin is cooperative, with sensitive cells surviving in the presence of resistant cells at otherwise lethal concentrations. The populations exhibit a diverse range of spatial segregation patterns that depend on drug concentration and initial conditions. Mathematical models indicate that the observed dynamics are consistent with global cooperation, despite the fact that β-lactamase remains cell-associated. Experiments confirm that resistant colonies provide a protective effect to sensitive cells on length scales multiple times the size of a single colony, and populations seeded with (on average) no more than a single resistant cell can produce mixed communities in the presence of the drug. While biophysical models of drug degradation suggest that individual resistant cells offer only short-range protection to neighboring cells, we show that long-range protection may arise from synergistic effects of multiple resistant cells, providing surprisingly large protection zones even at small population fractions.Subject terms: Microbial ecology, Antibiotics, Population dynamics  相似文献   

18.
19.
A conjecture on the convergence of diffusion models in population genetics to a simple Markov chain model is proved. The notion of bi-generalized diffusion processes and their limit theorems are used systematically to prove the conjecture. Three limits; strong selection-weak mutation limit, moderate selection-weak mutation limit, weak selection-weak mutation limit are considered for typical diffusion models in population genetics.Supported in part by Research Grant from the Ministry of Education, Science and Culture of JapanSupported by the Air Force Office of Scientific Research Contract No. F49620 85C 0144  相似文献   

20.
Demographic models are widely used to produce management recommendations for different species. For invasive plants, current management recommendations to control local population growth are often based on data from a limited number of populations per species, and the assumption of stable population structure (asymptotic dynamics). However, spatial variation in population dynamics and deviation from a stable structure may affect these recommendations, calling into question their generality across populations of an invasive species. Here, I focused on intraspecific variation in population dynamics and investigated management recommendations generated by demographic models across 37 populations of a short-lived, invasive perennial herb (Lupinus polyphyllus). Models that relied on the proportional perturbations of vital rates (asymptotic elasticities) indicated an essential role for plant survival in long-term population dynamics. The rank order of elasticities for different vital rates (survival, growth, retrogression, fecundity) varied little among the 37 study populations regardless of population status (increasing or declining asymptotically). Summed elasticities for fecundity increased, while summed elasticities for survival decreased with increasing long-term population growth rate. Transient dynamics differed from asymptotic dynamics, but were qualitatively similar among populations, that is, depending on the initial size structure, populations tended to either increase or decline in density more rapidly than predicted by asymptotic growth rate. These findings indicate that although populations are likely to exhibit transient dynamics, management recommendations based on asymptotic elasticities for vital rates might be to some extent generalised across established populations of a given short-lived invasive plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号