首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated whether a daily high-dose calcium supplement perturbs the zinc status in 23 postmenopausal women (mean age: 63yr) with low bone mineral density. Plasma and erythrocyte zinc concentrations, plasma bone-specific alkaline phosphatase (BSAP) and 5′-nucleotidase activities, and urinary zinc and calcium excretion were determined first at the end of 4 wk of daily oral calcium (1200 mg) and were measured again at the end of the subsequent 4 wk of daily cosupplementation with calcium (1200 mg) and zinc (30 mg). Mean plasma and erythrocyte zinc concentrations after 4 wk of calcium alone were not significantly different from concentrations after cosupplementation of calcium and zinc. Mean plasma BSAP activities before cosupplementation with zinc was significantly higher than that after zinc (p<0.02), whereas plasma 5′-nucleotidase activities were not affected by zinc supplementation. Urinary zinc excretion slightly, but significantly, increased after the supplementation of zinc (p<0.05), whereas calcium excretion remained similar. Our data indicate that a 4-wk zinc supplementation did not significantly improve zinc status. Although limited by the small sample size and short study duration, our data suggest that a daily calcium dose of 1200 mg had no effect on the zinc status of our subjects.  相似文献   

2.
3.
To examine whether the bone mineral density (BMD) decreases uniformly with aging in any spongy bones, the authors investigated age-related changes of BMD in the calcaneus, talus, and scaphoid bone. After the ordinary dissection by medical students was finished, calcanei, tali, and scaphoid bones were resected from the subjects, and BMDs were measured by dual-energy X-ray absorptiometry. Their BMDs seemed to decrease gradually with aging in the calcanei, tali, and scaphoid bones. It was found that there were statistically significant relationships between age and BMD in the men’s and women’s scaphoid bones, women’s tali, and women’s calcanei, but not in the men’s tali and calcanei. It should be noted that there were significant relationships between age and BMD in both men’s and women’s scaphoid bones. In regard to relationship in BMD between the bones of the upper and lower limbs in individuals, it was found that the relationship between the calcaneus and talus was higher than that between the calcaneus and scaphoid bone. This suggests that there is a higher relationship in BMD between the two tarsal bones compared with that between the tarsal and carpal bones.  相似文献   

4.
doi: 10.1111/j.1741‐2358.2010.00414.x Effect of bone mineral density on masticatory performance and efficiency Objective: To evaluate the effect of bone mineral density (BMD) on masticatory performance and efficiency in dentate subjects. Background data: Osteoporosis is the most common disorder of the bone. It causes reduction in BMD of the all the skeletal tissue including jaw bones. It also promotes bone loss in jaw bones. In osteoporosis, a reduction of maximal bite force and greater electromyography activity of masticatory muscles is documented. This may lead to the development of masticatory dysfunction which can be assessed by a chewing test in the form of change in masticatory performance and efficiency. Materials and methods: Sixty subjects with equal numbers of men and women were selected for the study, in which BMD screening (T‐score) was carried out to identify the normal, osteopenic and osteoporotic subjects. Their masticatory performance and efficiency was evaluated by a chewing test (fractional sieving method). Results: A high ‘T’ score was associated with low masticatory efficiency and a low ‘T’ score with high masticatory efficiency. Masticatory performance and efficiency was significantly higher among males as compared to females with similar range of BMD. Conclusion: In both genders, high BMD groups (low ‘T’ score) had a significantly high percentage of masticatory efficiency compared to the low BMD (high ‘T’ score) group.  相似文献   

5.

Background

Osteoporosis is common in patients with COPD but the likely multi-factorial causes contributing to this condition (e.g. sex, age, smoking, therapy) mask the potential contribution from elements related to COPD. In order to study osteoporosis and bone mineral density (BMD) related to COPD, we studied a well-defined group of patients and controls.

Methods

BMD, forced expiratory volume in one second (FEV1), circulating bone biomarkers and biochemistry were determined in 30 clinically stable male ex-smokers with confirmed COPD and 15 age matched "ex-smoker" male controls. None of the patients were on inhaled corticosteroids or received more than one short course of steroids.

Results

Mean (SD) FEV1% predicted of patients was 64(6)%, the majority having Global Initiative for Chronic Obstructive Lung Disease (GOLD) II airflow obstruction. There were 5/30 patients and 1/15 controls who were osteoporotic, while a further 17 patients and 5 controls were osteopenic. The BMD at the hip was lower in patients than controls, but not at the lumbar spine. Mean values of procollagen type 1 amino-terminal propeptide and osteocalcin, both markers of bone formation, and Type 1 collagen β C-telopeptide, a marker of bone resorption, were similar between patients and controls. However, all bone biomarkers were inversely related to hip BMD in patients (r = -0.51, r = -0.67, r = -0.57, p < 0.05) but did not relate to lumbar spine BMD. 25-OH Vitamin D was lower in patients.

Conclusions

Men with COPD had a greater prevalence of osteoporosis and osteopenia than age matched male controls, with a marked difference in BMD at the hip. Bone biomarkers suggest increased bone turnover.  相似文献   

6.
Until recently, randomized controlled trials have not demonstrated convincing evidence that vitamin D, or vitamin D in combination with calcium supplementation could improve bone mineral density (BMD), osteoporosis and fracture. It remains unclear whether vitamin D levels are causally associated with total body BMD. Here, we performed a Mendelian randomization study to investigate the association of vitamin D levels with total body BMD using a large‐scale vitamin D genome‐wide association study (GWAS) dataset (including 79 366 individuals) and a large‐scale total body BMD GWAS dataset (including 66,628 individuals). We selected three Mendelian randomization methods including inverse‐variance weighted meta‐analysis (IVW), weighted median regression and MR‐Egger regression. All these three methods did not show statistically significant association of genetically increased vitamin D levels with total body BMD. Importantly, our findings are consistent with recent randomized clinical trials and Mendelian randomization study. In summary, we provide genetic evidence that increased vitamin D levels could not improve BMD in the general population. Hence, vitamin D supplementation alone may not be associated with reduced fracture incidence among community‐dwelling adults without known vitamin D deficiency, osteoporosis, or prior fracture.  相似文献   

7.
比较不同频率的正弦交变电磁场对SD青年大鼠骨密度及骨形态计量指标的影响,筛选可有效提升大鼠骨密度的频率参数。将32只8周龄SD雌性大鼠随机分为4组:对照组、15 Hz组、30 Hz组、45 Hz组;除对照组外,实验组大鼠每天都给予相应频率的1.8 m T正弦交变电磁场干预,干预时间为90 min。磁场干预8周后,双能X射线骨密度仪检测大鼠全身骨密度、右侧股骨骨密度和椎骨骨密度,ELISA分析血清中骨形成与骨吸收生化指标的含量,右侧胫骨进行荧光间距测量与骨形态计量分析。相比于对照组,15 Hz组、45 Hz组大鼠的全身骨密度、股骨骨密度、椎骨骨密度均明显升高(P0.05),血清中骨钙素与骨保护素含量也显著提升(P0.05);实验组大鼠的胫骨双荧光间距与骨组织静态参数均高于对照组(P0.05)。结果表明,15 Hz、45 Hz正弦交变电磁场可有效提升青年大鼠的骨密度,从而可预防骨质疏松的发生。  相似文献   

8.
The extent of conversion of daidzein to its metabolite, equol, by intestinal microflora may be a critical step that determines if a diet rich in daidzein protects against the deterioration of bone after estrogen withdrawal. The objective was to determine the extent that daidzein is converted to equol. In addition, bone mineral content (BMC), bone mineral density (BMD) and strength of femurs and lumbar vertebrae (LV) in four mouse strains were measured. Mice were ovariectomized and fed control diet (AIN93G) with or without daidzein (200 mg daidzein/kg diet) for 3 weeks, after which serum, femurs and LV were collected. Serum daidzein and equol were elevated in all mice fed daidzein. Among mice fed daidzein, the CD-1 and Swiss–Webster (SW) mice had higher (P<.001) serum equol than C57BL/6 (C57) and C3H mice. Differences due to mouse strain were observed for all bone outcomes. C57 mice had lower femur BMC (P<.001), BMD (P<.001) and peak load at femur midpoint (P<.001) and neck (P<.001) than other mouse strains. C57 mice also had a lower femur midpoint yield load (P<.001) and resilience (P<.001) than C3H mice. C57 mice had a lower LV1–4 BMC (P<.001) and BMD (P<.001) compared with all mouse strains and peak load of LV3 was lower than CD-1 and SW mice. Differences in serum equol, BMD and bone strength properties should be considered when selecting a mouse strain for investigating whether dietary strategies that include isoflavones preserve bone tissue after ovariectomy.  相似文献   

9.
Calorie restriction (CR) reduces bone quantity but not bone quality in rodents. Nothing is known regarding the long-term effects of CR with adequate intake of vitamin and minerals on bone quantity and quality in middle-aged lean individuals. In this study, we evaluated body composition, bone mineral density (BMD), and serum markers of bone turnover and inflammation in 32 volunteers who had been eating a CR diet (approximately 35% less calories than controls) for an average of 6.8 ± 5.2 years (mean age 52.7 ± 10.3 years) and 32 age- and sex-matched sedentary controls eating Western diets (WD). In a subgroup of 10 CR and 10 WD volunteers, we also measured trabecular bone (TB) microarchitecture of the distal radius using high-resolution magnetic resonance imaging. We found that the CR volunteers had significantly lower body mass index than the WD volunteers (18.9 ± 1.2 vs. 26.5 ± 2.2 kg m(-2) ; P = 0.0001). BMD of the lumbar spine (0.870 ± 0.11 vs. 1.138 ± 0.12 g cm(-2) , P = 0.0001) and hip (0.806 ± 0.12 vs. 1.047 ± 0.12 g cm(-2) , P = 0.0001) was also lower in the CR than in the WD group. Serum C-terminal telopeptide and bone-specific alkaline phosphatase concentration were similar between groups, while serum C-reactive protein (0.19 ± 0.26 vs. 1.46 ± 1.56 mg L(-1) , P = 0.0001) was lower in the CR group. Trabecular bone microarchitecture parameters such as the erosion index (0.916 ± 0.087 vs. 0.877 ± 0.088; P = 0.739) and surface-to-curve ratio (10.3 ± 1.4 vs. 12.1 ± 2.1, P = 0.440) were not significantly different between groups. These findings suggest that markedly reduced BMD is not associated with significantly reduced bone quality in middle-aged men and women practicing long-term calorie restriction with adequate nutrition.  相似文献   

10.
The aim of this study was to investigate the effect of common vitamin D receptor (VDR) gene polymorphisms on the bone mineral density (BMD) of Greek postmenopausal women. Healthy postmenopausal women (n=578) were recruited for the study. The BMD of the lumbar spine and hip was measured using dual-energy X-ray absorptiometry with the Lunar DPX-MD device. Assessment of dietary calcium intake was performed with multiple 24-h recalls. Genotyping was performed for the BsmI, TaqI and Cdx-2 polymorphisms of the VDR gene. The selected polymorphisms were not associated with BMD, osteoporosis or osteoporotic fractures. Stratification by calcium intake revealed that in the low calcium intake group (<680 mg/day), all polymorphisms were associated with the BMD of the lumbar spine (P<.05). After adjustment for potential covariates, BsmI and TaqI polymorphisms were associated with the presence of osteoporosis (P<.05), while the presence of the minor A allele of Cdx-2 polymorphism was associated with a lower spine BMD (P=.025). In the higher calcium intake group (>680 mg/day), no significant differences were observed within the genotypes for all polymorphisms. The VDR gene is shown to affect BMD in women with low calcium intake, while its effect is masked in women with higher calcium intake. This result underlines the significance of adequate calcium intake in postmenopausal women, given that it exerts a positive effect on BMD even in the presence of negative genetic predisposition.  相似文献   

11.
12.
Objective: It is known that bone mineral density (BMD) and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin.  相似文献   

13.
14.
Osteoporosis is a metabolic disorder characterized by low bone mass and deteriorated microarchitecture, with an increased risk of fracture. Some miRNAs have been confirmed as potential modulators of osteoblast differentiation to maintain bone mass. Our miRNA sequencing results showed that miR-664-3p was significantly down-regulated during the osteogenic differentiation of the preosteoblast MC3T3-E1 cells. However, whether miR-664-3p has an impact on bone homeostasis remains unknown. In this study, we identified overexpression of miR-664-3p inhibited the osteoblast activity and matrix mineralization in vitro. Osteoblastic miR-664-3p transgenic mice exhibited reduced bone mass due to suppressed osteoblast function. Target prediction analysis and experimental validation confirmed Smad4 and Osterix (Osx) are the direct targets of miR-664-3p. Furthermore, specific inhibition of miR-664-3p by subperiosteal injection with miR-664-3p antagomir protected against ovariectomy-induced bone loss. In addition, miR-664-3p expression was markedly higher in the serum from patients with osteoporosis compared to that from normal subjects. Taken together, this study revealed that miR-664-3p suppressed osteogenesis and bone formation via targeting Smad4 and Osx. It also highlights the potential of miR-664-3p as a novel diagnostic and therapeutic target for osteoporotic patients.  相似文献   

15.
Recent studies have demonstrated the potential application of computed tomography (CT) in research into bone density. Clinical studies of bone density using CT commonly employ a dipotassium phosphate phantom to calibrate measurements of mineral density. Designed for in vivo studies, the use of this phantom requires that bones be scanned while immersed in and permeated by fluids or soft tissues similar to water in X-ray attenuation coefficient. However, this condition may not always be met in anthropological applications, which often involve rare and fragile specimens. This study compares mineral density values calculated for a sample of bones scanned—at the same sites—in air and in water. The results indicate that, when scanned in air, the mineral density of trabecular bone is dramatically underestimated, while that of cortical bone is slightly overestimated. We present a linear regression equation to correct this error but recommend that, when possible, researchers calculate their own regressions based on their specific scanning conditions. Am J Phys Anthropol 103:557–560, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Leg weakness (LW) issues are a great concern for pig breeding industry. And it also has a serious impact on animal welfare. To dissect the genetic architecture of limb-and-hoof firmness in commercial pigs, a genome-wide association study was conducted on bone mineral density (BMD) in three sow populations, including Duroc, Landrace and Yorkshire. The BMD data were obtained by ultrasound technology from 812 pigs (including Duroc 115, Landrace 243 and Yorkshire 454). In addition, all pigs were genotyped using genome-by-sequencing and a total of 224 162 single-nucleotide polymorphisms (SNPs) were obtained. After quality control, 218 141 SNPs were used for subsequent genome-wide association analysis. Nine significant associations were identified on chromosomes 3, 5, 6, 7, 9, 10, 12 and 18 that passed Bonferroni correction threshold of 0.05/(total SNP numbers). The most significant locus that associated with BMD (P value = 1.92e−14) was detected at approximately 41.7 Mb on SSC6 (SSC stands for Sus scrofa chromosome). CUL7, PTK7, SRF, VEGFA, RHEB, PRKAR1A and TPO that are located near the lead SNP of significant loci were highlighted as functionally plausible candidate genes for sow limb-and-hoof firmness. Moreover, we also applied a new method to measure the BMD data of pigs by ultrasound technology. The results provide an insight into the genetic architecture of LW and can also help to improve animal welfare in pigs.  相似文献   

17.
目的:测定大鼠骨元素含量和血清相关激素及IL-6含量,研究运动对去卵巢大鼠骨元素代谢和相关激素的影响。方法:健康4月龄雌性SD大鼠24只,用抽签法随机分成4组:正常对照组;假去卵巢组;去卵巢组;去卵巢+运动组。运动组于去卵巢术后第7 d开始运动训练,每周5 d,每天连续匀速跑45 min,16 m/min,跑道倾角0°,持续10周。结果:去卵巢大鼠骨Ca,Mg,S,Co,Mn,Zn等含量降低,骨P含量升高,血清E2,P,TSH,T4,CT,Cortisol,GH等显著降低,IL-6,FSH,LH等的含量显著升高。运动训练可使去卵巢大鼠骨Ca,Mg,S,Co,Mn等含量回升,血清E2,P,TSH,T4,CT,Cortisol,GH等显著回升,IL-6,FSH,LH等显著回降。结论:运动可纠正去卵巢所致的大鼠骨元素代谢和相关激素的改变。  相似文献   

18.
葛根异黄酮对去卵巢大鼠骨质疏松症的影响   总被引:10,自引:0,他引:10  
通过对3月龄Wister大鼠,手术切除双侧卵巢后7天,每天灌胃TIP40mg/kg和10mg/kg,并设去卵巢组(OVX)、假手术组(Sham)和尼尔雌醇阳性对照组(OVX-E2),在给药3个月时,测定大鼠股骨骨矿密度(BMD)、骨钙及血清钙水平等,研究葛根异黄酮(TIP)对由雌激素缺乏引起的骨质疏松症的防治作用。结果TIP40mg/kg的BMD比去卵巢组显著提高了18.1%;使胫骨和血清钙含量显著增加;使去卵巢大鼠的脾脏重量系数和胸腺重量系数明显恢复;并可明显控制大鼠的体重。葛根异黄酮可能具有雌激素样活性,并有改善骨质疏松症的生物学活性。  相似文献   

19.
Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.  相似文献   

20.
耿力  姚珍薇  骆建云  韩力力  卢起 《遗传》2007,29(11):1345-1350
探讨细胞色素P450 19 (CYP19) 基因Val80多态性及护骨素(OPG) 基因A163G多态性与绝经后女性骨密度 (BMD) 的关系。随机选择居住在重庆的绝经后女性200例, 采用多聚酶链反应-限制性片段长度多态性法检测Val80及A163G多态性, 采用Norland公司XR-46系列双能X线骨密度仪测量股骨近端及腰椎BMD。 200名绝经后女性中Val80基因型GG、GA及AA的频率分别为19.5%、44.5%及36.0%; A163G基因型GG、GC 及CC的频率分别为: 13.0%, 42.0%及45.0%; 基因型频率分布均符合Hardy-Weinberg平衡 (P>0.05)。协方差分析及多元逐步回归分析显示CYP19基因第3外显子Val80多态性与绝经后女性BMD无相关性 (P>0.05)。除大转子外, A163G位点AG/GG/AG+GG基因型者股骨颈、Ward’s三角及腰椎BMD均较AA基因型者低, A163G基因型与股骨颈、Ward’s三角及腰椎BMD有相关性 (P<0.05)。OPG基因启动子区A163G多态性分布存在明显的种族差异, 且与绝经后女性BMD有一定关联, AA型对BMD具有一定的保护作用, G等位基因是BMD降低的危险因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号