首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective: We aimed to characterize further the Lou/C (LOU) and Fischer 344 (F344) rat strains for nutritional traits to validate their use as contrasting strains for molecular genetic studies. Research Methods and Procedures: Five batches of LOU and F344 rats were used to measure caloric intake, weight gain, and body composition when fed a chow diet, a self‐selection diet (together with the study of preferences for macronutrients), hypercaloric diets, and a chow diet in a cold environment. Results: Despite a higher caloric intake when fed a chow diet, LOU rats showed a lower weight gain, final body weight, and percentage of fat tissue, together with a higher percentage of carcass weight, than F344 rats. When fed a self‐selection diet, LOU males ingested less protein and more fat than F344 males, and the reverse was observed for females. In this condition, feed efficiency was reduced in LOU but increased in F344 rats compared with the chow diet. Diet‐induced obesity was observed in F344 rats but not in LOU rats fed hypercaloric diets. In a cold environment, both LOU and F344 rats displayed an increased percentage of brown adipose tissue compared with control groups, together with a higher caloric intake. Discussion: The study shows robust nutritional differences between the LOU rat, a lean strain with a low feed efficiency and resistant to diet‐induced obesity, and the contrasting F344 rat strain. It also shows the interest in these strains for studying the genetic components of resistance to obesity.  相似文献   

2.
Objective: To characterize the dose‐response relationship between dietary fat to carbohydrate ratio and spontaneous caloric intake. Research Methods and Procedures: Male Long‐Evans rats consumed milk‐based liquid diets that differed in fat content (17% to 60% of kilocalories) but had equivalent protein content and energy density. In Experiment 1, rats consumed one of the diets (n = 9/diet group) as the sole source of nutrition for 16 days. In Experiment 2, diets were offered as an option to nutritionally complete chow for 4 days followed by a 3‐day chow‐only washout in a randomized within‐subjects design (n = 30). In Experiment 3, nine rats received isocaloric intragastric infusions of diet overnight, with chow available ad libitum. At least two no‐infusion days separated the different diet infusions, which were given in random order. Food intake was measured daily Results: Dietary fat dose dependently increased total daily kilocalories in each of the three paradigms. Discussion: These data imply that the postingestive effects of carbohydrate and fat differentially engage the physiological substrates that regulate daily caloric intake. These findings reiterate the importance of investigating macronutrient‐specific controls of feeding, rather than prematurely concluding that dietary attributes that covary with fat content (e.g., caloric density and palatability) drive the overeating associated with a high‐fat diet.  相似文献   

3.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity. (Author correspondence: )  相似文献   

4.
Objective: Prior research has shown that fasting alternated with a diet of standard rodent chow and a 10% sucrose solution produces bingeing on the sucrose, but animals remain at normal body weight. The present study investigated whether restricted access to a highly palatable combination of sugar and fat, without food deprivation, would instigate binge eating and also increase body weight. Methods and Procedures: Male rats were maintained for 25 days on one of four diets: (i) sweet‐fat chow for 2 h/day followed by ad libitum standard chow, (ii) 2‐h sweet‐fat chow only 3 days/week and access to standard chow the rest of the time, (iii) ad libitum sweet‐fat chow, or (iv) ad libitum standard chow. Results: Both groups with 2‐h access to the sweet‐fat chow exhibited bingeing behavior, as defined by excessively large meals. The body weight of these animals increased due to large meals and then decreased between binges as a result of self‐restricted intake of standard chow following binges. However, despite these fluctuations in body weight, the group with 2‐h access to sweet‐fat chow every day gained significantly more weight than the control group with standard chow available ad libitum. Discussion: These findings may have implications for the body weight fluctuations associated with binge‐eating disorder, as well as the relationship between binge eating and the obesity epidemic.  相似文献   

5.
Objective : To investigate, in young obese male Zucker rats, the effects of chronic food restriction and subsequent refeeding on: 1) parameters of nonadipose and adipose growth, 2) regional adipose depot cellularity [fat cell volume (FCV) and number], and 3) circulating leptin levels. Research Methods and Procedures : Obese (fa/fa) and lean (Fa/?) male Zucker rats were studied from age 5 to 19 weeks. After baseline food intake monitoring, 10 obese rats were subjected to 58 days of marked caloric restriction from ad libitum levels [obese‐restricted (OR)], followed by a return to ad libitum feeding for 22 days. Ten lean control rats and 10 obese control rats were fed ad libitum for the entire experiment. All rats were fed using a computer‐driven automated feeding system designed to mimic natural eating patterns. Results : After food restriction, OR rats weighed significantly less than did lean and obese rats and showed a significant diminution in body and adipose growth as compared with obese rats. Relative adiposity was not different between obese and OR rats and was significantly higher than that of lean rats. The limitation in growth of the adipose tissue mass in OR rats was due mostly to suppression of fat cell proliferation because the mean FCV in each of the four depots was not affected. Serum leptin levels of OR and obese rats were not different from each other but were significantly higher than those of lean rats. Discussion : Marked caloric restriction affects obese male Zucker rats in a manner different from that of nongenetic rodent models (i.e., Wistar rats). In comparison with the response to caloric deprivation of Wistar rats, these calorically restricted obese male Zucker rats appeared to defend their relative adiposity and mean FCV at the expense of fat cell number. These findings indicate that genetic and/or tissue‐specific controls override the general consequences of food restriction in this genetic model of obesity.  相似文献   

6.
A link between leptin resistance, obesity, and salt sensitivity has been suggested. SHHF/Mcc-fa cp rats (SHHF) were used to study the effect of gene dosage of a null mutation of the leptin receptor (cp) on salt sensitivity and response to a combined endothelin A and B receptor antagonist (bosentan). Obese (cp/cp), heterozygous (+/cp), and homozygous lean (+/+) male SHHF were fed a low salt diet (0.3% NaCl) for 7 days, followed by a high salt diet (8.0% NaCl) for 7 days. There were no significant differences in systolic blood pressure between genotypes on low salt. In response to high salt, cp/cp had significantly greater systolic pressure than +/cp and +/+. On high salt diet, cp/cp showed a significant increase in 24 h urinary endothelin excretion and increased renal expression of preproendothelin mRNA. There was no effect of high salt diet on renal excretion of nitric oxide (NOx) or on gene expression of endothelial, neuronal, or cytokine-induced nitric oxide synthase isoforms (eNOS, nNOS, iNOS, respectively). Treatment with bosentan prevented the high salt-induced increment in systolic blood pressure in cp/cp. This was associated with a doubling of renal NOx excretion, but without changes in eNOS, nNOS, or iNOS expression. Endothelin receptor antagonism did not normalize systolic pressure in any of the genotypes. Our studies indicate that obesity secondary to leptin resistance (cp/cp) results in increased salt sensitivity that is mediated by endothelin in the SHHF rat.  相似文献   

7.
8.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.  相似文献   

9.
Objective: To characterize the gastrointestinal tract at the onset and in well‐established obesity. Methods and Procedures: Lean (+/?) and obese (cp/cp) male JCR:LA‐cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results: At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well‐established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide‐1 (GLP‐1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion: Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity.  相似文献   

10.
In Sprague-Dawley rats, fatty acid synthase (FAS) activity is suppressed by dietary fat. To test the hypothesis that a defect in regulation of de novo fatty acid synthesis exists in massive obesity, we investigated the effect of diet on FAS mRNA levels in genetically obese JCR:LA-corpulent (cp) rats. We also determined levels of mRNA encoding adipsin, a fat cell-derived protein possibly associated with lipid metabolism. Hepatic FAS mRNA levels were elevated five-fold in obese compared to lean cp rats and were unsuppressed by dietary fat. Dietary sucrose increased FAS mRNA levels in lean cp rats, but, in contrast to Sprague-Dawley rats, little deposition of lipid resulted. Adipsin mRNA levels were fivefold lower in obese cp and Sprague-Dawley rats than in lean cp rats and were unaffected by diet. We conclude that exaggerated de novo fatty acid synthesis may play a major role in the pathogenesis of obesity in obese JCR:LA-corpulent rats.  相似文献   

11.
The corpulent JCR:LA-cp rat (cp/cp) is a useful model for study of the metabolic consequences of obesity and hyperinsulinemia. To assess the effect of hyperinsulinemia on VLDL secretion in this model, we measured rates of secretion of VLDL in perfused livers derived from cp/cp rats and their lean littermates. Livers of cp/cp rats secreted significantly greater amounts of VLDL triglyceride and apolipoprotein, compared with lean littermates. The content of apoB, apoE, and apoCs in both perfusate and plasma VLDL was greater in the cp/cp rat, as was the apolipoprotein (apo)C, apoA-I, and apoA-IV content of plasma HDL. Triglyceride content was also greater in cp/cp livers, as was hepatic lipogenesis and expression of lipogenic enzymes and sterol regulatory element binding protein-1 (SREBP-1). Hepatic mRNAs for apoE, and apoA-I were higher in livers of cp/cp rats. In contrast, the steady state levels of apoC-II, apoC-III, and apoB mRNAs were unchanged. Thus, livers of obese hyperinsulinemic cp/cp JCR:LA-cp rats secrete a greater number of VLDL particles that are enriched in triglyceride, apoE, and apoC. Greater secretion of VLDL in the cp/cp rat in part results from higher endogenous fatty acid synthesis, which in turn may occur in response to increased expression of the lipogenic enzyme regulator SREBP-1c.  相似文献   

12.
Background: We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon‐like peptide‐1 (GLP‐1). Objective: Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP‐1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures: Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA‐cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP‐1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results: Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP‐1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP‐1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion: Overall, combining HP with HF in the diet increased GLP‐1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet‐induced vs. genetic obesity with overt hyperleptinemia.  相似文献   

13.
Regional hypothalamic neuropeptide Y (NPY) concentrations were compared between cp/cp JCR:LA corpulent rats, which were grossly obese, hyperphagic, and hyperinsulinemic, and lean (+/+) controls. In freely fed cp/cp rats, NPY levels in the arcuate nucleus (ARC) were 31% higher than in lean rats (p less than 0.001). In lean rats, chronic food restriction significantly raised NPY levels by 22% in the ARC (p less than 0.05) and by 44% in the dorsomedial nucleus (DMH; p less than 0.05). By contrast, food-restricted cp/cp rats showed no change in the ARC, but NPY levels rose in the DMH (by 36%; p less than 0.05) and ventromedial nucleus (31%; p less than 0.05). Increased NPY levels in the ARC, the major site of hypothalamic NPY synthesis, suggests increased NPYergic activity in cp/cp rats; given the central actions of NPY, this could contribute to hyperphagia, obesity, and hyperinsulinemia in this syndrome. Abnormal NPY responses to food deprivation further suggest dysregulation of NPY in cp/cp rats.  相似文献   

14.
Objective: To investigate the effect of a high‐energy (HE) diet on caloric intake, body weight, and related parameters in outbred male Sprague‐Dawley (SD) rats. Research Methods and Procedures: Twenty‐eight SD rats were fed either chow (C) for 19 weeks or HE diet for 14 weeks and then C for 5 weeks. Blood hormones and metabolites were assayed, and expression of uncoupling protein‐1 and hypothalamic energy‐balance‐related genes were determined by Northern blotting and in situ hybridization, respectively. Results: HE rats gained body weight more rapidly than C animals with a range of weight gains, but there was no evidence that weight gain was bimodally distributed. Caloric intake was transiently elevated after introduction of the HE diet. Transfer of HE rats back to C resulted in a drop in caloric intake, but a stable body weight. In terminal analysis, two of four dissected adipose tissue depots were heavier in rats that had previously been fed HE diet. Blood leptin, insulin, glucose, and nonesterified fatty acids were not different between the groups. Uncoupling protein‐1 mRNA was elevated in interscapular brown adipose tissue from HE rats. There was a trend for agouti‐related peptide mRNA in the hypothalamic arcuate nucleus to be higher in HE rats. Discussion: Contrary to other studies of the SD rat on HE diet, body weight and other measured parameters were normally distributed. There was no segregation into two distinct populations on the basis of susceptibility to diet‐induced obesity. This characteristic may be dependent on the breeding colony from which animals were sourced.  相似文献   

15.
Objective: To investigate the effects of mild to moderate caloric restriction on parameters of body growth, fat mass, and adipose tissue cellularity in female and male Wistar rats. Research Methods and Procedures: Three‐month‐old female and male Wistar rats were subjected to a chronic, mild to moderate caloric restriction paradigm (5%, 10%, or 20% reduction in caloric intake from ad libitum values) for 6 months. This was accomplished using a unique automated feeder system tailored to the food consumption levels of individual rats. Body weight and length, weight of lean organs, regional adipose mass, and adipose cellularity were measured before and after the diet restriction. Results: Caloric restriction produced proportional decelerations in body weight increases in both genders, without significant changes in body length or lean organ mass. Marked and disproportional reductions in regional adipose tissue mass were produced at all levels of food restriction (even at 5% restriction). An unexpected finding was that in response to graded caloric restriction, female rats preserved adipose fat cell number at the expense of fat cell volume, whereas the converse was seen for male rats. Discussion: These studies demonstrate a sexual dimorphism in the response to mild to moderate degrees of chronic caloric restriction. At low levels of caloric restriction, it is possible to affect regional adipose mass and cellularity while preserving lean organ mass.  相似文献   

16.
17.
Objective: To characterize the meal patterns of free feeding Sprague‐Dawley rats that become obese or resist obesity when chronically fed a high‐fat diet. Research Methods and Procedures: Male Sprague‐Dawley rats (N = 120) were weaned onto a high‐fat diet, and body weight was monitored for 19 weeks. Rats from the upper [diet‐induced obese (DIO)] and lower [diet‐resistant (DR)] deciles for body‐weight gain were selected for study. A cohort of chow‐fed (CF) rats weight‐matched to the DR group was also studied. Food intake was continuously monitored for 7 consecutive days using a BioDAQ food intake monitoring system. Results: DIO rats were obese, hyperphagic, hyperleptinemic, hyperinsulinemic, hyperglycemic, and hypertriglyceridemic relative to the DR and CF rats. The hyperphagia of DIOs was caused by an increase in meal size, not number. CF rats ate more calories than DR rats; however, this was because of an increase in meal number, not size. When expressed as a function of lean mass, CF and DR rats consumed the same amount of calories. The intermeal intervals of DIO and DR rats were similar; both were longer than CF rats. The nocturnal satiety ratio of DIO rats was significantly lower than DR and CF rats. The proportion of calories eaten during the nocturnal period did not differ among groups. Discussion: The hyperphagia of a Sprague‐Dawley rat model of chronic diet‐induced obesity is caused by an increase in meal size, not number. These results are an important step toward understanding the mechanisms underlying differences in feeding behavior of DIO and DR rats.  相似文献   

18.
Objective: Sprague‐Dawley rats fed a high‐fat diet (HFD) are either obesity prone (OP) or obesity resistant (OR). We tested the hypothesis that differences in the ultradian rhythmic patterns of insulin and ghrelin in OP vs. OR rats promote obesity in OP rats. Research Methods and Procedures: Rats were fed regular chow or an HFD, and ultradian fluctuations in leptin, insulin, and ghrelin were analyzed in blood samples collected at 5‐minute intervals from intrajugular cannulae of freely moving rats. Results: Regular chow feeding resulted in a slow weight gain accompanied by small increases in insulin and leptin and a decrease in ghrelin discharge, with only the pulse amplitude significantly altered. Similar changes were observed in OR rats, despite HFD consumption. In contrast, OP rats exhibited a high rate of weight gain and marked hyperinsulinemia, hyperleptinemia, and hypoghrelinemia; amplitude was altered, but frequency was stable. In a short‐term experiment, HFD elicited similar secretory patterns of smaller magnitude even in the absence of weight gain. Discussion: We showed that three hormonal signals of disparate origin involved in energy homeostasis were secreted in discrete episodes, and only the pulse amplitude component was vulnerable to age and HFD consumption. Increases in insulin and leptin and decreases in ghrelin pulse amplitude caused by HFD were exaggerated in OP rats relative to OR rats and preceded the weight increase. These findings show that a distinct genetic predisposition in the endocrine organs of OR rats confers protection against high‐fat intake‐induced ultradian hypersecretion of obesity‐promoting hormonal signals.  相似文献   

19.
This study investigated sex‐specific effects of repeated stress and food restriction on food intake, body weight, corticosterone plasma levels and expression of corticotropin‐releasing factor (CRF) in the hypothalamus and relaxin‐3 in the nucleus incertus (NI). The CRF and relaxin‐3 expression is affected by stress, and these neuropeptides produce opposite effects on feeding (anorexigenic and orexigenic, respectively), but sex‐specific regulation of CRF and relaxin‐3 by chronic stress is not fully understood. Male and female rats were fed ad libitum chow (AC) or ad libitum chow and intermittent palatable liquid Ensure without food restriction (ACE), or combined with repeated food restriction (60% chow, 2 days per week; RCE). Half of the rats were submitted to 1‐h restraint stress once a week. In total, seven weekly cycles were applied. The body weight of the RCE stressed male rats significantly decreased, whereas the body weight of the RCE stressed female rats significantly increased compared with the respective control groups. The stressed female RCE rats considerably overate chow during recovery from stress and food restriction. The RCE female rats showed elevated plasma corticosterone levels and low expression of CRF mRNA in the paraventricular hypothalamic nucleus but not in the medial preoptic area. The NI expression of relaxin‐3 mRNA was significantly higher in the stressed RCE female rats compared with other groups. An increase in the expression of orexigenic relaxin‐3 and misbalanced hypothalamic‐pituitary‐adrenal axis activity may contribute to the overeating and increased body weight seen in chronically stressed and repeatedly food‐restricted female rats .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号