首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD’s anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.  相似文献   

2.
神经病理性疼痛是一种临床的常见疾病,严重影响了患者及家属的生活质量,给社会带来了沉重的负担。神经病理性疼痛的发病机制及有效治疗仍在探索中。中枢神经系统内有三种胶质细胞,包括小胶质细胞、星形胶质细胞以及少突胶质细胞。近来有研究发现,这三种胶质细胞可通过活化、产生和释放细胞因子等途径参与神经病理性疼痛的调节。探索神经胶质细胞的多种复杂功能或作用机制来充分认识胶质细胞的特点,为今后神经病理性疼痛的临床治疗提供新的思路。本文通过研究小胶质细胞、星形胶质细胞以及少突胶质细胞的特点及其对神经病理性疼痛的影响,并分析中枢神经系统胶质细胞与疼痛治疗之间的相关性,旨在总结神经病理性疼痛的发生和发展过程中小胶质细胞、星状胶质细胞及少突胶质细胞的调节作用。  相似文献   

3.
IntroductionThe increased incidence of Glioblastoma Multiforme, the most aggressive and most common primary brain tumour, is evident worldwide. Survival rates are reaching only 15 months due to its high recurrence and resistance to current combination therapies including oncotomy, radiotherapy and chemotherapy. Light has been shed in the recent years on the anticancer properties of cannabinoids from Cannabis sativa.ObjectiveTo determine whether cannabinoids alone or in combination with radiotherapy and/or chemotherapy inhibit tumour progression, induce cancer cell death, inhibit metastasis and invasiveness and the mechanisms that underlie these actions.MethodPubMed and Web of Science were used for a systemic search to find studies on the anticancer effects of natural cannabinoids on glioma cancer cells in vitro and/or in vivo.ResultsA total of 302 papers were identified, of which 14 studies were found to fit the inclusion criteria. 5 studies were conducted in vitro, 2 in vivo and 7 were both in vivo and in vitro. 3 studies examined the efficacy of CBD, THC and TMZ, 1 study examined CBD and radiation, 2 studies examined efficacy of THC only and 3 studies examined the efficacy of CBD only. 1 study examined the efficacy of CBD, THC and radiotherapy, 2 studies examined the combination of CBD and THC and 2 more studies examined the efficacy of CBD and TMZ.ConclusionThe evidence in this systematic review leads to the conclusion that cannabinoids possess anticancer potencies against glioma cells, however this effect varies with the combinations and dosages used. Studies so far were conducted on cells in culture and on mice as well as a small number of studies that were conducted on humans. Hence in order to have more accurate results, higher quality studies mainly including human clinical trials with larger sample sizes are necessitated urgently for GBM treatment.  相似文献   

4.

Background

Cannabis therapy has been considered an effective treatment for spasticity, although clinical reports of symptom reduction in multiple sclerosis (MS) describe mixed outcomes. Recently introduced therapies of combined Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) extracts have potential for symptom relief with the possibility of reducing intoxication and other side effects. Although several past reviews have suggested that cannabinoid therapy provides a therapeutic benefit for symptoms of MS, none have presented a methodical investigation of newer cannabinoid treatments in MS-related spasticity. The purpose of the present review was to systematically evaluate the effectiveness of combined THC and CBD extracts on MS-related spasticity in order to increase understanding of the treatment's potential effectiveness, safety and limitations.

Methods

We reviewed MEDLINE/PubMed, Ovid, and CENTRAL electronic databases for relevant studies using randomized controlled trials. Studies were included only if a combination of THC and CBD extracts was used, and if pre- and post-treatment assessments of spasticity were reported.

Results

Six studies were systematically reviewed for treatment dosage and duration, objective and subjective measures of spasticity, and reports of adverse events. Although there was variation in the outcome measures reported in these studies, a trend of reduced spasticity in treated patients was noted. Adverse events were reported in each study, however combined TCH and CBD extracts were generally considered to be well-tolerated.

Conclusion

We found evidence that combined THC and CBD extracts may provide therapeutic benefit for MS spasticity symptoms. Although some objective measures of spasticity noted improvement trends, there were no changes found to be significant in post-treatment assessments. However, subjective assessment of symptom relief did often show significant improvement post-treatment. Differences in assessment measures, reports of adverse events, and dosage levels are discussed.  相似文献   

5.
DDD-028 (4), a novel pentacyclic pyridoindolobenzazepine derivative was evaluated in vitro for receptor binding affinity and in vivo for analgesic activity using rodent models of neuropathic and inflammatory pain. DDD-028 does not bind to opioid, cannabinoid, dopamine, or histamine receptors. DDD-028 is very active even at the low oral dose of 1–5 mg/kg in both neuropathic, (spinal nerve ligation and chronic constriction injury) and inflammatory (Complete Freund’s Adjuvant Induced) models of pain. DDD-028 appears to be about 6-fold more potent than pregabalin and indomethacin. Visual observation of all the animals used in these studies indicated that DDD-028 is well tolerated without any sedation. Thus, DDD-028 seems to be a promising candidate for the treatment of neuropathic and inflammatory pain without the possible side effects or abuse potential associated with opioid or cannabinoid activities.  相似文献   

6.
Objective To evaluate the effect of the oral synthetic δ-9-tetrahydrocannabinol dronabinol on central neuropathic pain in patients with multiple sclerosis.Design Randomised double blind placebo controlled crossover trial.Setting Outpatient clinic, University Hospital of Aarhus, Denmark.Participants 24 patients aged between 23 and 55 years with multiple sclerosis and central pain.Intervention Orally administered dronabinol at a maximum dose of 10 mg daily or corresponding placebo for three weeks (15-21 days), separated by a three week washout period.Main outcome measure Median spontaneous pain intensity (numerical rating scale) in the last week of treatment.Results Median spontaneous pain intensity was significantly lower during dronabinol treatment than during placebo treatment (4.0 (25th to 75th centiles 2.3 to 6.0) v 5.0 (4.0 to 6.4), P = 0.02), and median pain relief score (numerical rating scale) was higher (3.0 (0 to 6.7) v> 0 (0 to 2.3), P = 0.035). The number needed to treat for 50% pain relief was 3.5 (95% confidence interval 1.9 to 24.8). On the SF-36 quality of life scale, the two items bodily pain and mental health indicated benefits from active treatment compared with placebo. The number of patients with adverse events was higher during active treatment, especially in the first week of treatment. The functional ability of the multiple sclerosis patients did not change.Conclusions Dronabinol has a modest but clinically relevant analgesic effect on central pain in patients with multiple sclerosis. Adverse events, including dizziness, were more frequent with dronabinol than with placebo during the first week of treatment.  相似文献   

7.
BackgroundCannabinoid-based medicines (CBMs) are being used widely in the elderly. However, their safety and tolerability in older adults remains unclear. We aimed to conduct a systematic review and meta-analysis of safety and tolerability of CBMs in adults of age ≥50 years.Methods and findingsA systematic search was performed using MEDLINE, PubMed, EMBASE, CINAHL PsychInfo, Cochrane Library, and ClinicalTrials.gov (1 January 1990 to 3 October 2020). Randomised clinical trials (RCTs) of CBMs in those with mean age of ≥50 years for all indications, evaluating the safety/tolerability of CBMs where adverse events have been quantified, were included. Study quality was assessed using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) criteria and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. Two reviewers conducted all review stages independently. Where possible, data were pooled using random-effects meta-analysis. Effect sizes were calculated as incident rate ratio (IRR) for outcome data such as adverse events (AEs), serious AEs (SAEs), and death and risk ratio (RR) for withdrawal from study and reported separately for studies using tetrahydrocannabinol (THC), THC:cannabidiol (CBD) combination, and CBD. A total of 46 RCTs were identified as suitable for inclusion of which 31 (67%) were conducted in the United Kingdom and Europe. There were 6,216 patients (mean age 58.6 ± 7.5 years; 51% male) included in the analysis, with 3,469 receiving CBMs. Compared with controls, delta-9-tetrahydrocannabinol (THC)-containing CBMs significantly increased the incidence of all-cause and treatment-related AEs: THC alone (IRR: 1.42 [95% CI, 1.12 to 1.78]) and (IRR: 1.60 [95% CI, 1.26 to 2.04]); THC:CBD combination (IRR: 1.58 [95% CI,1.26 to 1.98]) and (IRR: 1.70 [95% CI,1.24 to 2.33]), respectively. IRRs of SAEs and deaths were not significantly greater under CBMs containing THC with or without CBD. THC:CBD combination (RR: 1.40 [95% CI, 1.08 to 1.80]) but not THC alone (RR: 1.18 [95% CI, 0.89 to 1.57]) significantly increased risk of AE-related withdrawals. CBD alone did not increase the incidence of all-cause AEs (IRR: 1.02 [95% CI, 0.90 to 1.16]) or other outcomes as per qualitative synthesis. AE-related withdrawals were significantly associated with THC dose in THC only [QM (df = 1) = 4.696, p = 0.03] and THC:CBD combination treatment ([QM (df = 1) = 4.554, p = 0.033]. THC-containing CBMs significantly increased incidence of dry mouth, dizziness/light-headedness, and somnolence/drowsiness. Study limitations include inability to fully exclude data from those <50 years of age in our primary analyses as well as limitations related to weaknesses in the included trials particularly incomplete reporting of outcomes and heterogeneity in included studies.ConclusionsThis pooled analysis, using data from RCTs with mean participant age ≥50 years, suggests that although THC-containing CBMs are associated with side effects, CBMs in general are safe and acceptable in older adults. However, THC:CBD combinations may be less acceptable in the dose ranges used and their tolerability may be different in adults over 65 or 75 years of age.

Latha Velayudhan and co-workers report a meta-analysis on safety of cannabinoid-based medicines in people aged over 50 years.  相似文献   

8.
Sung HJ  Kim YS  Kim IS  Jang SW  Kim YR  Na DS  Han KH  Hwang BG  Park DS  Ko J 《Proteomics》2004,4(9):2805-2813
Acupuncture has long been used for pain relief. Although recent studies have shown that acupuncture can reduce neuropathic pain, the mechanism of this effect is not clear and little information is available regarding proteins that are involved in the development of neuropathic pain and the effects of acupuncture. We have developed an animal model for neuropathic pain using young adult male Sprague-Dawley rats. The model was confirmed by behavioral tests. Electroacupuncture (EA) treatment was applied to Zusanli (ST36) of neuropathic pain model to examine the analgesic effect of EA. The protein expression profile of the hypothalamus in both neuropathic pain and EA treatment models was analyzed using two-dimensional electrophoresis-based proteomics. We detected thirty-six proteins that were differentially expressed in the neuropathic pain model compared with normal rats and that restored to normal expression levels after EA treatment. Twenty-one of these proteins were identified in the MS-FiT database and are involved in a number of biological processes, including inflammation, enzyme metabolism and signal transduction. Potential applications of our results include the identification and characterization of signaling pathways involved in EA treatment and further exploration of the role of selected identified proteins in the animal model.  相似文献   

9.
Many studies have verified that microRNAs contribute a lot to neuropathic pain progression. Furthermore, nerve-related inflammatory cytokines play vital roles in neuropathic pain progression. miR-183 has been identified to have a common relationship with multiple pathological diseases. However, the potential effects of miR-183 in the process of neuropathic pain remain undetermined. Therefore, we performed the current study with the purpose of finding the functions of miR-183 in neuropathic pain progression using a chronic sciatic nerve injury (CCI) rat model. We demonstrated that miR-183 expression levels were evidently reduced in CCI rats in contrast with the control group. Overexpression of miR-183 produced significant relief of mechanical hyperalgesia, as well as thermal hyperalgesia in CCI rats. Furthermore, neuropathic pain-correlated inflammatory cytokine expression levels containing interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) were obviously inhibited by upregulation of miR-183. Meanwhile, dual-luciferase reporter assays showed MAP3K4 was a direct downstream gene of miR-183. The expression levels of MAP3K4 were modulated by the increased miR-183 negatively, which lead to the downregulation of IL-6, IL-1β, and COX-2, and then reduced neuropathic pain progression, respectively. Overall, our study pointed out that miR-183 was a part of the negative regulator which could relieve neuropathic pain by targeting MAP3K4. Thus it may provide a new clinical treatment for neuropathic pain patients clinical therapy.  相似文献   

10.
Objective To compare the analgesic efficacy and side effects of the synthetic cannabinoid nabilone with those of the weak opioid dihydrocodeine for chronic neuropathic pain. Design Randomised, double blind, crossover trial of 14 weeks’ duration comparing dihydrocodeine and nabilone.Setting Outpatient units of three hospitals in the United Kingdom.Participants 96 patients with chronic neuropathic pain, aged 23-84 years. Main outcome measures The primary outcome was difference between nabilone and dihydrocodeine in pain, as measured by the mean visual analogue score computed over the last 2 weeks of each treatment period. Secondary outcomes were changes in mood, quality of life, sleep, and psychometric function. Side effects were measured by a questionnaire.Intervention Patients received a maximum daily dose of 240 mg dihydrocodeine or 2 mg nabilone at the end of each escalating treatment period of 6 weeks. Treatment periods were separated by a 2 week washout period.Results Mean baseline visual analogue score was 69.6 mm (range 29.4-95.2) on a 0-100 mm scale. 73 patients were included in the available case analysis and 64 patients in the per protocol analysis. The mean score was 6.0 mm longer for nabilone than for dihydrocodeine (95% confidence interval 1.4 to 10.5) in the available case analysis and 5.6 mm (10.3 to 0.8) in the per protocol analysis. Side effects were more frequent with nabilone.Conclusion Dihydrocodeine provided better pain relief than the synthetic cannabinoid nabilone and had slightly fewer side effects, although no major adverse events occurred for either drug. Trial registration Current Controlled Trials ISRCTN15330757.  相似文献   

11.
ObjectiveTo investigate the analgesic effect of amitriptyline on neuropathic pain model rats, diabetic neuropathic pain model rats and fibromyalgia model rats.MethodsThe healthy male Sprague wrote – Dawley (SD) rats were taken as the research object, and they were randomly divided into model group (group A), beside the sciatic nerve and injection of 5 mm amitriptyline group (group B), beside the sciatic nerve and injection of 10 mm amitriptyline group (group C), beside the sciatic nerve and injection of 15 mm amitriptyline group (group D), intraperitoneal injection of amitriptyline group (group E). Pain induced by selective injury of sciatic nerve branches in rats, pain induced by chronic compression of sciatic nerve, diabetic neuropathic pain and fibromyalgia were conducted to determine the pain threshold of mechanical stimulation in rats after drug administration.ResultsThe pain threshold of mechanical stimulation in the local amitriptyline group (group B, C, D) was significantly higher than that in the group A and group E at each time point after drug treatment, and the pain threshold of mechanical stimulation gradually increased with the increase of concentration. There was no statistically significant difference in mechanical stimulation pain threshold between group A and group E at each time point after drug treatment.ConclusionPara-sciatic injection of amitriptyline at different concentrations has analgesic effects on neuropathic pain, diabetic neuropathic pain and fibromyalgia in rat models, and amitriptyline directly ACTS on the local sciatic nerve.  相似文献   

12.
The prevalence of neuropathic pain is difficult to estimate as most studies evaluating chronic pain do not differentiate neuropathic from nociceptive pain. There are only a few studies of neuropathic pain in the elderly, specifically in the oncology population. This article is a non-systematic review of the relevant evidence on the prevalence and aetiopathogenesis of neuropathic cancer pain in the elderly.  相似文献   

13.
Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson''s and Huntington''s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’.  相似文献   

14.
Cannabinoids reduce fertility of sea urchin sperm   总被引:1,自引:0,他引:1  
Cannabinoids are potent pharmacological substances derived from marihuana. The effects of delta 9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) on fertilization in the sea urchin Strongylocentrotus purpuratus were investigated. Insemination of THC-treated eggs (5-400 microM) with excess sperm did not result in polyspermic fertilization. At minimal sperm densities, THC (0.1-10 microM) inhibited fertilization in a dose-dependent manner. Pretreatment of eggs with THC did not reduce their receptivity to sperm. Pretreatment of sperm with THC reduced their fertilizing capacity. The concentration of THC required to reduce sperm fertility by 50% was 1.1 +/- 1.1 microM. The fertilizing capacity of THC-treated sperm depended on concentration of sperm and duration of pretreatment. The fertility of sperm at minimal densities was reduced by 50% at 129.3 +/- 43 s treatment with 10 microM THC. The adverse effect of THC on sperm fertility was reversible. CBN and CBD at comparable concentrations (0.1-10 microM) inhibited fertilization in a manner similar to THC. First division was not delayed in zygotes that were fertilized with sperm pretreated with 10 microM THC. These studies show that cannabinoids directly affect the process of fertilization in sea urchins by reducing the fertilizing capacity of sperm.  相似文献   

15.
Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) caused a marked stimulation of phospholipase A2 when incubated with intact human platelets that were prelabeled with [14C]arachidonate. CBD was about 1.5 x as potent as THC in the same concentration range (10→80 μM) Most of the released arachidonate was converted to lipoxygenase products. When [14C]arachidonate was incubated with lysed platelet extracts, THC inhibited both thromboxane synthetase and prostaglandin cyclooxygenase, so that the net effect was a redistribution of products toward the lipoxygenase pathway at the same time that a decrease in total cyclooxygenase product formation occurred. THC did not directly affect arachidonate lipoxygenase. Both THC and CBD also stimulated release from prelabeled neuroblastoma cells (NBA2), which do not contain an active lipoxygenase pathway. In this case, accumulation of free arachidonate was detected by autoradiography. The multiple effects of THC and CBD on phospholipase A2 and arachidonate metabolism may mediate some of the pharmacological actions of these compounds, such as their anticonvulsant, anti-inflammatory, and hypotensive properties.  相似文献   

16.
神经性疼痛(neuropathic pain,NP)是由外周或中枢躯体感觉系统的损伤或疾病导致的疼痛。药物治疗在镇痛中占据重要地位,但是过量药物治疗往往会引起严重的副作用,或在可耐受剂量下仅提供了部分的疼痛缓解。认知行为疗法(cognitive-behavioral therapy,CBT)和虚拟现实(virtual reality,VR)干预作为新的、非侵入性的,以及更为安全的疼痛替代治疗方法引起了广泛的关注。CBT和VR疗法可通过转移注意力、改变神经可塑性和神经环路,以及调节促炎和抗炎因子水平缓解神经性疼痛。本文旨在对神经性疼痛的发病机制以及CBT和VR疗法的镇痛效果和机制做出解析,从而为神经性疼痛的治疗干预提供重要的理论指导。  相似文献   

17.
Delta(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prevalent biologically active constituents of Cannabis sativa. THC is the prototypic cannabinoid CB1 receptor agonist and is psychoactive and analgesic. CBD is also analgesic, but it is not a CB1 receptor agonist. Low voltage-activated T-type calcium channels, encoded by the Ca(V)3 gene family, regulate the excitability of many cells, including neurons involved in nociceptive processing. We examined the effects of THC and CBD on human Ca(V)3 channels stably expressed in human embryonic kidney 293 cells and T-type channels in mouse sensory neurons using whole-cell, patch clamp recordings. At moderately hyperpolarized potentials, THC and CBD inhibited peak Ca(V)3.1 and Ca(V)3.2 currents with IC(50) values of approximately 1 mum but were less potent on Ca(V)3.3 channels. THC and CBD inhibited sensory neuron T-type channels by about 45% at 1 mum. However, in recordings made from a holding potential of -70 mV, 100 nm THC or CBD inhibited more than 50% of the peak Ca(V)3.1 current. THC and CBD produced a significant hyperpolarizing shift in the steady state inactivation potentials for each of the Ca(V)3 channels, which accounts for inhibition of channel currents. Additionally, THC caused a modest hyperpolarizing shift in the activation of Ca(V)3.1 and Ca(V)3.2. THC but not CBD slowed Ca(V)3.1 and Ca(V)3.2 deactivation and inactivation kinetics. Thus, THC and CBD inhibit Ca(V)3 channels at pharmacologically relevant concentrations. However, THC, but not CBD, may also increase the amount of calcium entry following T-type channel activation by stabilizing open states of the channel.  相似文献   

18.
The emerging role of microRNAs (miRNAs) have been deeply explored in multiple diseases including neuropathic pain. miR-194 was widely reported to be a tumor suppressor and was related to the inflammatory response. The critical role of neuroinflammation on neuropathic pain leads to a thinking about the relationship between miR-194 and neuropathic pain. However, the function of miR-194 in neuropathic pain remains unknown. This study was aimed to explore the relationship between miR-194 and neuropathic pain progression by chronic sciatic nerve injury (CCI). miR-194 abnormally downregulated in the CCI model rat and its overexpression significantly alleviates neuroinflammation in vivo. We predict Forkhead box protein A1 (FOXA1) as a direct target of miR-194, whose restoration can markedly reverse the effects of miR-194 on neuropathic pain. Overall, our study demonstrated a novel mechanism of neuropathic pain progression that miR-194 alleviates neuropathic pain via targeting FOXA1 and preventing neuroinflammation by downregulating inflammatory cytokines containing cyclooxygenase 2, interleukin 6 (IL-6), and IL-10 in vivo, which can be reversed by the overexpression of FOXA1.  相似文献   

19.
20.
The N-type voltage-gated calcium channel (Cav 2.2) has gained immense prominence in the treatment of chronic pain. While decreased channel function is ultimately anti-nociceptive, directly targeting the channel can lead to multiple adverse side effects. Targeting modulators of channel activity may facilitate improved analgesic properties associated with channel block and a broader therapeutic window. A novel interaction between Cav 2.2 and collapsin response mediator protein 2 (CRMP-2) positively regulates channel function by increasing surface trafficking. We recently identified a CRMP-2 peptide (TAT-CBD3), which effectively blocks this interaction, reduces or completely reverses pain behavior in a number of inflammatory and neuropathic models. Importantly, TAT-CBD3 did not produce many of the typical side effects often observed with Cav 2.2 inhibitors. Notably chronic pain mechanisms offer unique challenges as they often encompass a mix of both neuropathic and inflammatory elements, whereby inflammation likely causes damage to the neuron leading to neuropathic pain, and neuronal injury may produce inflammatory reactions. To this end, we sought to further disseminate the ability of TAT-CBD3 to alter behavioral outcomes in two additional rodent pain models. While we observed that TAT-CBD3 reversed mechanical hypersensitivity associated with a model of chronic inflammatory pain due to lysophosphotidylcholine-induced sciatic nerve focal demyelination (LPC), injury to the tibial nerve (TNI) failed to respond to drug treatment. Moreover, a single amino acid mutation within the CBD3 sequence demonstrated amplified Cav 2.2 binding and dramatically increased efficacy in an animal model of migraine. Taken together, TAT-CBD3 potentially represents a novel class of therapeutics targeting channel regulation as opposed to the channel itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号