首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-1beta (IL-1beta) mediates destruction of matrix collagens in diverse inflammatory diseases including arthritis, periodontitis, and pulmonary fibrosis by activating fibroblasts, cells that interact with matrix proteins through integrin-based adhesions. In vitro, IL-1beta signaling is modulated by focal adhesions, supramolecular protein complexes that are enriched with tyrosine kinases and phosphatases. We assessed the importance of tyrosine phosphatases in regulating cell-matrix interactions and IL-1beta signaling. In human gingival fibroblasts plated on fibronectin, IL-1beta enhanced the maturation of focal adhesions as defined by morphology and enrichment with paxillin and alpha-actinin. IL-1beta also induced activation of ERK and recruitment of phospho-ERK to focal complexes/adhesions. Treatment with the potent tyrosine phosphatase inhibitor pervanadate, in the absence of IL-1beta, recapitulated many of these responses indicating the importance of tyrosine phosphatases. Immunoblotting of collagen bead-associated complexes revealed that the tyrosine phosphatase, SHP-2, was also enriched in focal complexes/adhesions. Depletion of SHP-2 by siRNA or by homologous recombination markedly altered IL-1beta-induced ERK activation and maturation of focal adhesions. IL-1beta-induced tyrosine phosphorylation of SHP-2 on residue Y542 promoted focal adhesion maturation. Association of Gab1 with SHP-2 in focal adhesions correlated temporally with activation of ERK and was abrogated in cells expressing mutant (Y542F) SHP-2. We conclude that IL-1beta mediated maturation of focal adhesions is dependent on tyrosine phosphorylation of SHP-2 at Y542, leading to recruitment of Gab1, a process that may influence the downstream activation of ERK.  相似文献   

2.
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.  相似文献   

3.
SHP-2, a nontransmembrane-type protein-tyrosine phosphatase that contains two Src homology 2 (SH2) domains, is thought to participate in growth factor signal transduction pathways via SH2 domain interactions. To determine the role of each region of SHP-2 in platelet-derived growth factor signaling assayed by Elk-1 activation, we generated six deletion mutants of SHP-2. The large SH2 domain deletion SHP-2 mutant composed of amino acids 198-593 (SHP-2-(198-593)), but not the smaller SHP-2-(399-593), showed significantly higher SHP-2 phosphatase activity in vitro. In contrast, SHP-2-(198-593) mutant inhibited wild type SHP-2 phosphatase activity, whereas SHP-2-(399-593) mutant increased activity. To understand these functional changes, we focused on the docking protein Gab1 that assembles signaling complexes. Pull-down experiments with Gab1 suggested that the C-terminal region of SHP-2 as well as the SH2 domains (N-terminal region) associated with Gab1, but the SHP-2-(198-593) mutant did not associate with Gab1. SHP-2-(1-202) or SHP-2-(198-593) inhibited platelet-derived growth factorinduced Elk-1 activation, but SHP-2-(399-593) increased Elk-1 activation. Co-expression of SHP-2-(1-202) with SHP-2-(399-593) inhibited SHP-2-(399-593)/Gab1 interaction, and the SHP-2-(399-593) mutant induced SHP-2 phosphatase and Elk-1 activation, supporting the autoinhibitory effect of SH2 domains on the C-terminal region of SHP-2. These data suggest that both SHP-2/Gab1 interaction in the C-terminal region of SHP-2 and increased SHP-2 phosphatase activity are important for Elk-1 activation. Furthermore, we identified a novel sequence for SHP-2/Gab1 interactions in the C-terminal region of SHP-2.  相似文献   

4.
In epidermis, Ras can influence proliferation and differentiation; however, regulators of epidermal Ras function are not fully characterized, and Ras effects on growth and differentiation are controversial. EGF induced Ras activation in epidermal cells along with phosphorylation of the multisubstrate docking protein Gab1 and its binding to SHP-2. Expression of mutant Gab1Y627F deficient in SHP-2 binding or dominant-negative SHP-2C459S reduced basal levels of active Ras and downstream MAPK proteins and initiated differentiation. Differentiation triggered by both Gab1Y627F and SHP-2C459S could be blocked by coexpression of active Ras, consistent with Gab1 and SHP-2 action upstream of Ras in this process. To study the role of Gab1 and SHP-2 in tissue, we generated human epidermis overexpressing active Gab1 and SHP-2. Both proteins stimulated proliferation. In contrast, Gab1Y627F and SHP-2C459S inhibited epidermal proliferation and enhanced differentiation. Consistent with a role for Gab1 and SHP-2 in sustaining epidermal Ras/MAPK activity, Gab1-/- murine epidermis displayed lower levels of active Ras and MAPK with postnatal Gab1-/- epidermis, demonstrating the hypoplasia and enhanced differentiation seen previously with transgenic epidermal Ras blockade. These data provide support for a Ras role in promoting epidermal proliferation and opposing differentiation and indicate that Gab1 and SHP-2 promote the undifferentiated epidermal cell state by facilitating Ras/MAPK signaling.  相似文献   

5.
B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2.  相似文献   

6.
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.  相似文献   

7.
SHP-1 and SHP-2 are intracellular protein tyrosine phosphatases containing two adjacent src homology 2 domains that target these phosphatases to cell surface receptor signaling complexes and play a role in receptor signal transduction. In this report the PC12 cell system was used to investigate the potential roles of SHP-1 and SHP-2 in the induction of neuronal differentiation by nerve growth factor (NGF). By using neurite outgrowth as a marker for differentiation, the effects of transfected constructs of SHP-1 and SHP-2 were assessed. Overexpression of a catalytically inactive SHP-2, but not a catalytically inactive SHP-1, blocked NGF-stimulated neurite outgrowth. The mitogen-activated protein kinase (MAPK) signaling cascade is important for the morphological differentiation in PC12 cells, and both SHP-1 and SHP-2 have been implicated to act upstream of MAPK in other receptor signaling systems. A positive role for SHP-2 but not SHP-1 in the activation of MAPK by NGF was demonstrated by introduction of the SHP-2 phosphatase mutants along with hemagglutinin-tagged MAPK. Coexpression studies with the SHP-2 mutant along with mutant forms of MAPK kinase suggested that SHP-2 functions upstream of MAPK kinase and MAPK in NGF-induced neurite outgrowth.  相似文献   

8.
IL-2 stimulation of T lymphocytes induces the tyrosine phosphorylation and adaptor function of the insulin receptor substrate/Grb2-associated binder (Gab) family member, Gab2. In addition, Gab2 undergoes a marked decrease in its mobility in SDS-PAGE, characteristic of migration shifts induced by serine/threonine phosphorylations in many proteins. This migration shift was strongly diminished by treating cells with the MEK inhibitor U0126, indicating a possible role for ERK in Gab2 phosphorylation. Indeed, ERK phosphorylated Gab2 on a consensus phosphorylation site at serine 623, a residue located between tyrosine 614 and tyrosine 643 that are responsible for Gab2/Src homology 2 domain-containing tyrosine phosphatase (SHP)-2 interaction. We report that pretreatment of Kit 225 cells with U0126 increased Gab2/SHP-2 association and tyrosine phosphorylation of SHP-2 in response to IL-2, suggesting that ERK phosphorylation of serine 623 regulates the interaction between Gab2 and SHP-2, and consequently the activity of SHP-2. This hypothesis was confirmed by biochemical analysis of cells expressing Gab2 WT, Gab2 serine 623A or Gab2 tyrosine 614F, a mutant that cannot interact with SHP-2 in response to IL-2. Activation of the ERK pathway was indeed blocked by Gab2 tyrosine 614F and slightly increased by Gab2 serine 623A. In contrast, STAT5 activation was strongly enhanced by Gab2 tyrosine 614F, slightly reduced by Gab2 WT and strongly inhibited by Gab2 serine 623A. Analysis of the rate of proliferation of cells expressing these mutants of Gab2 demonstrated that tyrosine 614F mutation enhanced proliferation whereas serine 623A diminished it. These results demonstrate that ERK-mediated phosphorylation of Gab2 serine 623 is involved in fine tuning the proliferative response of T lymphocytes to IL-2.  相似文献   

9.
Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation.  相似文献   

10.
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.  相似文献   

11.
Divergent roles of SHP-2 in ERK activation by leptin receptors   总被引:21,自引:0,他引:21  
The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependent egr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.  相似文献   

12.
The myeloid restricted membrane glycoprotein, CD33, is a member of the recently characterized "sialic acid-binding immunoglobulin-related lectin" family. Although CD33 can mediate sialic acid-dependent cell interactions as a recombinant protein, its function in myeloid cells has yet to be determined. Since CD33 contains two potential immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail, we investigated whether it might act as a signaling receptor in myeloid cells. Tyrosine phosphorylation of CD33 in myeloid cell lines was stimulated by cell surface cross-linking or by pervanadate, and inhibited by PP2, a specific inhibitor of Src family tyrosine kinases. Phosphorylated CD33 recruited both the protein-tyrosine phosphatases, SHP-1 and SHP-2. CD33 was dephosphorylated in vitro by the co-immunoprecipitated tyrosine phosphatases, suggesting that it might also be an in vivo substrate. The first CD33 phosphotyrosine motif is dominant in CD33-SHP-1/SHP-2 interactions, since mutating tyrosine 340 in a CD33-cytoplasmic tail fusion protein significantly reduced binding to SHP-1 and SHP-2 in THP-1 lysates, while mutation of tyrosine 358 had no effect. Furthermore, the NH2-terminal Src homology 2 domain of SHP-1 and SHP-2, believed to be essential for phosphatase activation, selectively bound a CD33 phosphopeptide containing tyrosine 340 but not one containing tyrosine 358. Finally, mutation of tyrosine 340 increased red blood cell binding by CD33 expressed in COS cells. Hence, CD33 signaling through selective recruitment of SHP-1/SHP-2 may modulate its ligand(s) binding activity.  相似文献   

13.
Interleukin-1 (IL-1) signaling is dependent on focal adhesions, structures that are enriched with tyrosine kinases and phosphatases. Because the non-receptor tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is enriched in focal adhesions and IL-1-induced ERK activation requires increased Ca(2+), we determined whether SHP-2 modulates IL-1-induced Ca(2+) signaling. In SHP-2-deficient fibroblasts, IL-1-induced Ca(2+) signaling and ERK activation were markedly diminished compared with cells expressing SHP-2. IL-1-induced Ca(2+) release from the endoplasmic reticulum occurred in the vicinity of focal adhesions and was strongly inhibited by the blockage of phospholipase C (PLC) catalytic activity. Immunoprecipitation and immunostaining showed that SHP-2, the endoplasmic reticulum-specific protein calnexin, and PLCgamma1 were associated with focal adhesions; however, these associations and IL-1-induced ERK activation dissipated after cells were plated on non-integrin substrates. IL-1 promoted phosphorylation of SHP-2 and PLCgamma1. IL-1-induced phosphorylation of PLCgamma1 was diminished in SHP-2-deficient cells but was restored by stable transfection with SHP-2. BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)) blocked IL-1-induced phosphorylation of SHP-2 and PLCgamma1, indicating mutually dependent interactive roles for Ca(2+), SHP-2, and PLCgamma1 in IL-1 signaling. We conclude that SHP-2 is critical for IL-1-induced phosphorylation of PLCgamma1 and thereby enhances IL-1-induced Ca(2+) release and ERK activation. Focal adhesions co-localizing with the endoplasmic reticulum may provide molecular staging sites required for ERK activation.  相似文献   

14.
Interleukin (IL)-2, a critical cytokine with indispensable functions in regulating lymphoid homeostasis, induces the activation of several biochemical pathways. Precisely how these pathways are linked and how they relate to the biological action of IL-2 is incompletely understood. We previously identified SHP-2 (Src homology 2 domain containing phosphatase 2) as an important intermediate in IL-2-dependent MAPK activation and showed its association with a 98-kDa phosphoprotein in response to IL-2. Here, we demonstrate that Gab2, a recently identified adapter molecule, is the major SHP-2 and phosphatidylinositol 3'-kinase-associated 98-kDa protein in normal, IL-2-activated lymphocytes. We further demonstrate that phosphorylation of both Gab2 and SHP-2 is largely dependent upon tyrosine 338 of the IL-2 receptor beta chain. Gab2 can be a substrate of all the three major classes of non-receptor tyrosine kinases associated with the IL-2R, but in terms of IL-2 signaling, JAK3 but not Lck or Syk is essential for Gab2 phosphorylation. We also demonstrate that only IL-2 and IL-15, but not other gammac cytokines induce Gab2 phosphorylation; the ability to phosphorylate Gab2 correlates with Shc phosphorylation and ERK1/ERK2 activation. Finally, we also show that Gab2 levels are regulated by T cell activation, and resting T cells express little Gab2. Therefore, up-regulation and activation of Gab2 may be important in linking the IL-2 receptor to activation of MAPK and may be an important means of achieving specificity in cytokine signaling.  相似文献   

15.
Focal adhesion complexes are actin-rich, cytoskeletal structures that mediate cell adhesion to the substratum and also selectively regulate signal transduction pathways required for interleukin (IL)-1beta signaling to the MAP kinase, ERK. IL-1-induced ERK activation is markedly diminished in fibroblasts deprived of focal adhesions whereas activation of p38 and JNK is unaffected. While IL-1 signaling is known to involve the activity of protein and lipid kinases including MAP kinases, FAK, and PI3K, little is known about the role of phosphatases in the regulation of IL-1 signal generation and attenuation. Here we demonstrate that SHP-2, a protein tyrosine phosphatase present in focal adhesions, modulates IL-1-induced ERK activation and the transient actin stress fiber disorganization that occurs following IL-1 treatment in human gingival fibroblasts. Using a combination of immunoblotting, immunoprecipitation, and immunostaining we show that SHP-2 is present in nascent focal adhesions and undergoes phosphorylation on tyrosine 542 in response to IL-1 stimulation. Blocking anti-SHP-2 antibodies, electoporated into the cytosol of fibroblasts, inhibited IL-1-induced ERK activation, actin filament assembly, and cell contraction, indicating a role for SHP-2 in these processes. In summary, our data indicate that SHP-2, a focal adhesion-associated protein, participates in IL-1-induced ERK activation likely via an adaptor function.  相似文献   

16.
17.
The G protein-coupled sst2 somatostatin receptor acts as a negative cell growth regulator. Sst2 transmits antimitogenic signaling by recruiting and activating the tyrosine phosphatase SHP-1. We now identified Src and SHP-2 as sst2-associated molecules and demonstrated their role in sst2 signaling. Surface plasmon resonance and mutation analyses revealed that SHP-2 directly associated with phosphorylated tyrosine 228 and 312, which are located in sst2 ITIMs (immunoreceptor tyrosine-based inhibitory motifs). This interaction was required for somatostatin-induced SHP-1 recruitment and activation and consequent inhibition of cell proliferation. Src interacted with sst2 and somatostatin promoted a transient Gbetagamma-dependent Src activation concomitant with sst2 tyrosine hyperphosphorylation and SHP-2 activation. These steps were abrogated with catalytically inactive Src. Both catalytically inactive Src and SHP-2 mutants abolished somatostatin-induced SHP-1 activation and cell growth inhibition. Sst2-Src-SHP-2 complex formation was dynamic. Somatostatin further induced sst2 tyrosine dephosphorylation and complex dissociation accompanied by Src and SHP-2 inhibition. These steps were defective in cells expressing a catalytically inactive Src mutant. All these data suggest that Src acts upstream of SHP-2 in sst2 signaling and provide evidence for a functional role for Src and SHP-2 downstream of an inhibitory G protein-coupled receptor.  相似文献   

18.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

19.
Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation.  相似文献   

20.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号