首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp. PCC 6803 was studied using femtosecond transient absorption spectroscopy at 298 K. The photosystem I core particles were excited at 660, 693, and 710 nm with 150 fs spectrally narrow laser pulses (fwhm = 5 nm). Global analysis revealed three kinetic processes in the core antenna with lifetimes of 250-500 fs, 1.5-2.5 ps, and 20-30 ps. The first two components represent strongly excitation wavelength-dependent energy equilibration processes while the 20-30 ps phase reflects the trapping of energy by the reaction center. Excitation into the blue and red edge of the absorption band induces downhill and uphill energy flows, respectively, between different chlorophyll a spectral forms of the core. Excitation at 660 nm induces a 500 fs downhill equilibration process within the bulk of antenna while the selective excitation of long-wavelength-absorbing chlorophylls at 710 nm results in a 380 fs uphill energy transfer to the chlorophylls absorbing around 695-700 nm, presumably reaction center pigments. The 1.5-2.5 ps phases of downhill and uphill energy transfer are largely equivalent but opposite in direction, indicating energy equilibration between bulk antenna chlorophylls at 685 nm and spectral forms absorbing below 700 nm. Transient absorption spectra with excitation at 693 nm exhibit spectral evolution within approximately 2 ps of uphill energy transfer to major spectral forms at 680 nm and downhill energy transfer to red pigments at 705 nm. The 20-30 ps trapping component and P(700) photooxidation spectra derived from data on the 100 ps scale are largely excitation wavelength independent. An additional decay component of red pigments at 710 nm can be induced either by selective excitation of red pigments or by decreasing the temperature to 264 K. This component may represent one of the phases of energy transfer from inhomogeneously broadened red pigments to P(700). The data are discussed based on the available structural model of the photosystem I reaction center and its core antenna.  相似文献   

3.
Using a difference picosecond spectrophotometer with a time resolution of 10 ps, we investigated excitation energy transfer and charge separation in pigment-protein complexes of Photosystem I from bean leaves (chlorophyll/P-700 = 60). Under 20 ps excitation at 650 or 667 nm, the difference absorption spectra in the spectral region 600–720 nm were measured. They are associated with transition of antenna chlorophylls into singlet excited states and P-700 photooxidation. It was shown that the excited states in the whole inhomogeneous antenna were generated within 10 ps and deactivated with three-component kinetics, the t1/e values being 20–45, 100–300 and over 500 ps. Formation of P-700+ has a rise time of 15–30 ps. The fast component of the depletion of the antenna excited states is suggested to be due to transfer of excitation energy from antenna pigments to reaction centers and its trapping. The kinetics of the fast component is independent of excitation energy and a redox state of P-700.  相似文献   

4.
In photosynthetic membranes of cyanobacteria, algae, and higher plants, photosystem I (PSI) mediates light-driven transmembrane electron transfer from plastocyanin or cytochrome c6 to the ferredoxin-NADP complex. The oxidoreductase function of PSI is sensitized by a reversible photooxidation of primary electron donor P700, which launches a multistep electron transfer via a series of redox cofactors of the reaction center (RC). The excitation energy for the functioning of the primary electron donor in the RC is delivered via the chlorophyll core antenna in the complex with peripheral light-harvesting antennas. Supermolecular complexes of the PSI acquire remarkably different structural forms of the peripheral light-harvesting antenna complexes, including distinct pigment types and organizational principles. The PSI core antenna, being the main functional unit of the supercomplexes, provides an increased functional connectivity in the chlorophyll antenna network due to dense pigment packing resulting in a fast spread of the excitation among the neighbors. Functional connectivity within the network as well as the spectral overlap of antenna pigments allows equilibration of the excitation energy in the depth of the whole membrane within picoseconds and loss-free delivery of the excitation to primary donor P700 within 20-40 ps. Low-light-adapted cyanobacteria under iron-deficiency conditions extend this capacity via assembly of efficiently energy coupled rings of CP43-like complexes around the PSI trimers. In green algae and higher plants, less efficient energy coupling in the eukaryotic PSI-LHCI supercomplexes is probably a result of the structural adaptation of the Chl a/b binding LHCI peripheral antenna that not only extends the absorption cross section of the PSI core but participates in regulation of excitation flows between the two photosystems as well as in photoprotection.  相似文献   

5.
Ultrafast primary processes in the trimeric photosystem I core antenna-reaction center complex of the cyanobacterium Synechocystis sp. PCC 6803 have been examined in pump-probe experiments with approximately 100 fs resolution. A global analysis of two-color profiles, excited at 660 nm and probed at 5 nm intervals from 650 to 730 nm, reveals 430 fs kinetics for spectral equilibration among bulk antenna chlorophylls. At least two lifetime components (2.0 and 6.5 ps in our analysis) are required to describe equilibration of bulk chlorophylls with far red-absorbing chlorophylls (>700 nm). Trapping at P700 occurs with 24-ps kinetics. The multiphasic bulk left arrow over right arrow red equilibration kinetics are intriguing, because prior steady-state spectral studies have suggested that the core antenna in Synechocystis sp. contains only one red-absorbing chlorophyll species (C708). The disperse kinetics may arise from inhomogeneous broadening in C708. The one-color optical anisotropy at 680 nm (near the red edge of the bulk antenna) decays with 590 fs kinetics; the corresponding anisotropy at 710 nm shows approximately 3.1 ps kinetics. The latter may signal equilibration among symmetry-equivalent red chlorophylls, bound to different monomers within trimeric photosystem I.  相似文献   

6.
Vavilin D  Xu H  Lin S  Vermaas W 《Biochemistry》2003,42(6):1731-1746
Using a Synechocystis sp. PCC 6803 mutant strain that lacks photosystem (PS) I and that synthesizes chlorophyll (Chl) b, a pigment that is not naturally present in the wild-type cyanobacterium, the functional consequences of incorporation of this pigment into the PS II core complex were investigated. Despite substitution of up to 75% of the Chl a in the PS II core complex by Chl b, the modified PS II centers remained essentially functional and were able to oxidize water and reduce Q(A), even upon selective excitation of Chl b at 460 nm. Time-resolved fluorescence decay measurements upon Chl excitation showed a significant reduction in the amplitude of the 60-70 ps component of fluorescence decay in open Chl b-containing PS II centers. This may indicate slower energy transfer from the PS II core antenna to the reaction center pigments or slower energy trapping. Chl b and pheophytin b were present in isolated PS II reaction centers. Pheophytin b can be reversibly photoreduced, as evidenced from the absorption bleaching at approximately 440 and 650 nm upon illumination in the presence of dithionite. Upon excitation at 685 nm, transient absorption measurements using PS II particles showed some bleaching at 650 nm together with a major decrease in absorption around 678 nm. The 650 nm bleaching that developed within approximately 10 ps after the flash and then remained virtually unchanged for up to 1 ns was attributed to formation of reduced pheophytin b and oxidized Chl b in some PS II reaction centers. Chl b-containing PS II had a lower rate of charge recombination of Q(A)(-) with the donor side and a significantly decreased yield of delayed luminescence in the presence of DCMU. Taken together, the data suggest that Chl b and pheophytin b participate in electron-transfer reactions in PS II reaction centers of Chl b-containing mutant of Synechocystis without significant impairment of PS II function.  相似文献   

7.
The charge separation P700*A(0) --> P700(+)A(0)(-) and the subsequent electron transfer from the primary to secondary electron acceptor have been studied by subtracting absorption difference profiles for cyanobacterial photosystem I (PS I) complexes with open and closed reaction centers. Samples were excited at 660 nm, which lies toward the blue edge of the core antenna absorption spectrum. The resulting PS I kinetics were analyzed in terms of the relevant P700, P700(+), A(0), and A(0)(-) absorption spectra. In our kinetic model, the radical pair P700(+)A(0)(-) forms with 1.3 ps rise kinetics after creation of electronically excited P700*. The formation of A(1)(-) via electron transfer from A(0)(-) requires approximately 13 ps. The kinetics of the latter step are appreciably faster than previously estimated by other groups (20--50 ps).  相似文献   

8.
Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.  相似文献   

9.
A photosystem I preparation from maize, containing its full antenna complement (PSI-200) and in which detergent effects on chlorophyll coupling are almost completely absent, has been studied by time-resolved fluorescence techniques with approximately 5 ps resolution at 280 and 170 K in the wavelength interval of 690-780 nm. The data have been analyzed in terms of both the decay-associated spectra (DAS) and the time-resolved emission spectra (TRES). As in a previous room temperature study [Turconi, S., Weber, N., Schweitzer, D., Strotmann, H., and Holzwarth, A. R. (1994) Biochim. Biophys. Acta 1187, 324-334], the 280 K decay is well described by three DAS components in the 11-130 ps time range, the fastest of which displays both positive and negative amplitudes characteristic of excitation transfer from the bulk to the red antenna forms. Both the 57 and 130 ps components have all positive amplitudes and describe complex decay and equilibration processes involving the red forms. At 170 K, four major components in the 10-715 ps time range are required to describe the decay. The fastest represents bulk to red form transfer processes, while the 55, 216, and 715 ps decays, with all positive amplitudes, have maxima near 720, 730, and 740 nm, respectively, in accord with previous steady-state fluorescence measurements. The width and asymmetry of these DAS indicate that they are spectrally complex and represent decay and equilibration processes involving the red forms. Spectral evolution during the fluorescence decay process was analyzed in terms of the TRES. The red shifting of the TRES was analyzed in terms of the first central spectral moment (mean spectral energy) which is biexponential at both temperatures. The slower component, which describes equilibration between the red forms, leads to spectral red shifting during the entire fluorescence decay process, and the mean lifetimes of the spectral moments at 280 and 170 K (86 and 291 ps, respectively) are similar to the mean lifetimes of the fluorescence decays (119 and 384 ps, respectively). Thus, both spectral evolution and the trapping-associated fluorescence decay occur on a similar time scale, and both processes display a very similar temperature sensitivity. On the basis of these data, it is concluded that trapping in PSI-200 is to a large extent rate-limited by excitation diffusion in the antenna and in particular by the slow "uphill" transfer from the low-energy forms to the bulk and/or inner core chlorophyll molecules.  相似文献   

10.
The energy transfer from the light-harvesting antenna chlorophylls to the reaction center molecules and subsequent charge separation were investigated using a difference picosecond spectrophotometer with selective excitation. The objects were the pigment-protein complexes of photosystem 1 (Chl/P700 = 60) isolated from bean leaves. The difference absorption spectra of the excited states of light-harvesting antenna chlorophylls and the P700 photooxidation were measured. It was shown that the excited states of antenna chlorophylls were generated within 10 ps and deactivated with three-component kinetics: tau 1 = 20--45 ps, tau 2 = 100--300 ps, tau 3 greater than 500 ps. The process of the P700 photooxidation induced by the 650 nm exciting pulse was approximately monoexponential with tau equal to 15--30 ps. It is established that the P700 photooxidation is due to the efficient transfer of excitation energy from antenna chlorophylls to reaction centers.  相似文献   

11.
We performed picosecond time-resolved fluorescence spectroscopy in spinach photosystem II (PS II) particles at 4, 40, and 77 K and identified a new fluorescence band, F689. F689 was identified in addition to the well-known F685 and F695 bands in both analyses of decay-associated spectra and global Gaussian deconvolution of time-resolved spectra. Its fast decay suggests the energy transfer directly from F689 to the reaction center chlorophyll P680. The contribution of F689, which increases only at low temperature, explains the unusually broad and variable bandwidth of F695 at low temperature. Global analysis revealed the three types of excitation energy transfer/dissipation processes: (1) energy transfer from the peripheral antenna to the three core antenna bands F685, F689, and F695 with time constants of 29 and 171 ps at 77 and 4 K, respectively; (2) between the three core bands (0.18 and 0.82 ns); and (3) the decays of F689 (0.69 and 3.02 ns) and F695 (2.18 and 4.37 ns). The retardations of these energy transfer rates and the slow F689 decay rate produced the strong blue shift of the PS II fluorescence upon the cooling below 77 K.  相似文献   

12.
Kumazaki S  Abiko K  Ikegami I  Iwaki M  Itoh S 《FEBS letters》2002,530(1-3):153-157
Primary photochemistry in photosystem I (PS I) reaction center complex from Acaryochloris marina that uses chlorophyll d instead of chlorophyll a has been studied with a femtosecond spectroscopy. Upon excitation at 630 nm, almost full excitation equilibration among antenna chlorophylls and 40% of the excitation quenching by the reaction center are completed with time constants of 0.6(±0.1) and 4.9(±0.6) ps, respectively. The rise and decay of the primary charge-separated state proceed with apparent time constants of 7.2(±0.9) and 50(±10) ps, suggesting the reduction of the primary electron acceptor chlorophyll (A0) and its reoxidation by phylloquinone (A1), respectively.  相似文献   

13.
Masayuki Komura 《BBA》2006,1757(12):1657-1668
We performed picosecond time-resolved fluorescence spectroscopy in spinach photosystem II (PS II) particles at 4, 40, and 77 K and identified a new fluorescence band, F689. F689 was identified in addition to the well-known F685 and F695 bands in both analyses of decay-associated spectra and global Gaussian deconvolution of time-resolved spectra. Its fast decay suggests the energy transfer directly from F689 to the reaction center chlorophyll P680. The contribution of F689, which increases only at low temperature, explains the unusually broad and variable bandwidth of F695 at low temperature. Global analysis revealed the three types of excitation energy transfer/dissipation processes: (1) energy transfer from the peripheral antenna to the three core antenna bands F685, F689, and F695 with time constants of 29 and 171 ps at 77 and 4 K, respectively; (2) between the three core bands (0.18 and 0.82 ns); and (3) the decays of F689 (0.69 and 3.02 ns) and F695 (2.18 and 4.37 ns). The retardations of these energy transfer rates and the slow F689 decay rate produced the strong blue shift of the PS II fluorescence upon the cooling below 77 K.  相似文献   

14.
This article presents an investigation of the energy migration dynamics in intact cells of the unicellular photosynthetic cryptophyte Chroomonas CCMP270 by steady-state and time-resolved fluorescence measurements. By kinetic modeling of the fluorescence data on chlorophyll and phycocyanin 645 excitation (at 400 and 582 nm respectively), it has been possible to show the excited state energy distribution in the photosynthetic antenna of this alga. Excitation energy from phycocyanin 645 is distributed nearly equally between photosystem I and photosystem II with very high efficiency on a 100-ps timescale. The excitation energy trapping times for both photosystem I (∼30 ps) and photosystem I (200 and ∼540 ps) correspond well to those obtained from experiments on isolated photosystems. The results are compared with previous results for another cryptophyte species, Rhodomonas CS24, and suggest a similar membrane organization for the cryptophytes with the phycobiliproteins tightly packed in the thylakoid lumen around the periphery of the photosystems.  相似文献   

15.
The photosystem I complex organized in cyanobacterial membranes preferentially in trimeric form participates in electron transport and is also involved in dissipation of excess energy thus protecting the complex against photodamage. A small number of longwave chlorophylls in the core antenna of photosystem I are not located in the close vicinity of P700, but at the periphery, and increase the absorption cross-section substantially. The picosecond fluorescence kinetics of trimers resolved the fastest energy transfer components reflecting the equilibration processes in the core antenna at different redox states of P700. Excitation kinetics in the photosystem I bulk antenna is nearly trap-limited, whereas excitation trapping from longwave chlorophyll pools is diffusion-limited and occurs via the bulk antenna. Charge separation in the photosystem I reaction center is the fastest of all known reaction centers.  相似文献   

16.
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.  相似文献   

17.
Femtosecond transient absorption spectroscopy has been used to investigate the energy transfer and trapping processes in both intact membranes and purified detergent-isolated particles from a photosystem II deletion mutant of the cyanobacterium Synechocystis sp. PCC 6803, which contains only the photosystem I reaction center. Processes with similar lifetimes and spectra are observed in both the membrane fragments and the detergent-isolated particles, suggesting little disruption of the core antenna resulting from the detergent treatment. For the detergent-isolated particles, three different excitation wavelengths were used to excite different distributions of pigments in the spectrally heterogeneous core antenna. Only two lifetimes of 2.7-4.3 ps and 24-28 ps, and a nondecaying component are required to describe all the data. The 24-28 ps component is associated with trapping. The trapping process gives rise to a nondecaying spectrum that is due to oxidation of the primary electron donor. The lifetimes and spectra associated with trapping and radical pair formation are independent of excitation wavelength, suggesting that trapping proceeds from an equilibrated excited state. The 2.7-4.3 ps component characterizes the evolution from the initially excited distribution of pigments to the equilibrated excited state distribution. The spectrum associated with the 2.7-4.3 ps component is therefore strongly excitation wavelength dependent. Comparison of the difference spectra associated with the spectrally equilibrated state and the radical pair state suggests that the pigments in the photosystem I core antenna display some degree of excitonic coupling.  相似文献   

18.
The structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus has been recently resolved by x-ray crystallography to 2.5-A resolution. Besides the reaction center, photosystem I consists also of a core antenna containing 90 chlorophyll and 22 carotenoid molecules. It is their function to harvest solar energy and to transfer this energy to the reaction center (RC) where the excitation energy is converted into a charge separated state. Methods of steady-state optical spectroscopy such as absorption, linear, and circular dichroism have been applied to obtain information on the spectral properties of the complex, whereas transient absorption and fluorescence studies reported in the literature provide information on the dynamics of the excitation energy transfer. On the basis of the structure, the spectral properties and the energy transfer kinetics are simultaneously modeled by application of excitonic coupling theory to reveal relationships between structure and function. A spectral assignment of the 96 chlorophylls is suggested that allows us to reproduce both optical spectra and transfer and emission spectra and lifetimes of the photosystem I complex from S. elongatus. The model calculation allowed to study the influence of the following parameters on the excited state dynamics: the orientation factor, the heterogeneous site energies, the modifications arising from excitonic coupling (redistribution of oscillator strength, energetic splitting, reorientation of transition dipoles), and presence or absence of the linker cluster chlorophylls between antenna and reaction center. For the F?rster radius and the intrinsic primary charge separation rate, the following values have been obtained: R(0) = 7.8 nm and k(CS) = 0.9 ps(-1). Variations of these parameters indicate that the excited state dynamics is neither pure trap limited, nor pure transfer (to-the-trap) limited but seems to be rather balanced.  相似文献   

19.
Core antenna and reaction centre of photosystem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(-), 683-685(-), 696-697(-), and 711(-) nm are a common feature of used PSI complexes. The 77 K CD spectra of the trimeric PS I complexes exhibit also low amplitude components around 736 nm for A. platensis and 720 nm for T. elongatus attributed to red-most chlorophylls. The LD measurements indicate that the transition dipole moments of the red-most states are oriented parallel to the membrane plane. The formation of P700(+)A(1)(-) or (3)P700 was monitored by time-resolved difference absorbance and LD spectroscopy to elucidate the spectral properties of the PS I reaction centre. The difference spectra give strong evidence for the delocalization of the excited singlet states in the reaction centre. Therefore, P700 cannot be considered as a dimer but should be regarded as a multimer of the six nearly equally coupled reaction centre chlorophylls in accordance with structure-based calculations. On the basis of the results presented in this work and earlier work in the literature it is concluded that the triplet state is localized most likely on P(A), whereas the cation is localized most likely on P(B).  相似文献   

20.
Time-resolved fluorescence measurements were performed on isolated core and intact Photosystem I (PS I) particles and stroma membranes from Arabidopsis thaliana to characterize the type of energy-trapping kinetics in higher plant PS I. Target analysis confirms the previously proposed “charge recombination” model. No bottleneck in the energy flow from the bulk antenna compartments to the reaction center has been found. For both particles a trap-limited kinetics is realized, with an apparent charge separation lifetime of ∼6 ps. No red chlorophylls (Chls) are found in the PS I-core complex from A. thaliana. Rather, the observed red-shifted fluorescence (700-710 nm range) originates from the reaction center. In contrast, two red Chl compartments, located in the peripheral light-harvesting complexes, are resolved in the intact PS I particles (decay lifetimes 33 and 95 ps, respectively). These two red states have been attributed to the two red states found in Lhca 3 and Lhca 4, respectively. The influence of the red Chls on the slowing of the overall trapping kinetics in the intact PS I complex is estimated to be approximately four times larger than the effect of the bulk antenna enlargement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号