首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike most other experimental models of congestive heart failure, the volume overload model induced by aortocaval shunt (AVS) in rats was found to exhibit enhanced beta-adrenoceptor (beta-AR) signaling. To study whether the adenylyl cyclase (AC)-G protein system is involved in such a change, we examined cardiac AC activity and protein content as well as G(s)alpha and G(i)alpha activities, protein contents, and mRNA levels in both left (LV) and right (RV) ventricles at the failing stage (16 wk after surgery). Basal and forskolin-stimulated AC activities were significantly increased in both LV and RV from the failing hearts; this change was associated with an upregulation of type V/VI AC protein. In contrast to 5'-guanylyl imidodiphosphate and NaF, the stimulatory effect of isoproterenol on AC was increased in the failing heart. Although G(s)alpha and G(i)alpha protein contents in the failing hearts were not altered, the mRNA level for G(s)alpha was decreased by 20% and that for G(i)alpha was increased by 20%. In addition, the activity of G(s)alpha, but not G(i)alpha, as assessed by toxin-catalyzed ADP ribosylation, was significantly decreased in the failing heart. Losartan and imidapril treatments improved cardiac function and attenuated alterations in mRNA levels for G(s)alpha and G(i)alpha proteins, as well as G(s)alpha activity, without affecting changes in AC protein content or activities in heart failure due to volume overload. These data suggest that increased AC activity may contribute to the enhanced beta-AR signaling in the AVS model of heart failure, whereas alterations in gene expression for G proteins may be of an adaptive nature at this stage of heart failure.  相似文献   

2.
Norepinephrine (NE)-induced desensitization of the adrenergic receptor pathway may mimic the effects of hypoxia on cardiac adrenoceptors. The mechanisms involved in this desensitization were evaluated in male Wistar rats kept in a hypobaric chamber (380 Torr) and in rats infused with NE (0.3 mg. kg(-1). h(-1)) for 21 days. Because NE treatment resulted in left ventricular (LV) hypertrophy, whereas hypoxia resulted in right (RV) hypertrophy, the selective hypertrophic response of hypoxia and NE was also evaluated. In hypoxia, alpha(1)-adrenergic receptors (AR) density increased by 35%, only in the LV. In NE, alpha(1)-AR density decreased by 43% in the RV. Both hypoxia and NE decreased beta-AR density. No difference was found in receptor apparent affinity. Stimulated maximal activity of adenylate cyclase decreased in both ventricles with hypoxia (LV, 41%; RV, 36%) but only in LV with NE infusion (42%). The functional activities of G(i) and G(s) proteins in cardiac membranes were assessed by incubation with pertussis toxin (PT) and cholera toxin (CT). PT had an important effect in abolishing the decrease in isoproterenol-induced stimulation of adenylate cyclase in hypoxia; however, pretreatment of the NE ventricle cells with PT failed to restore this stimulation. Although CT attenuates the basal activity of adenylate cyclase in the RV and the isoproterenol-stimulated activity in the LV, pretreatment of NE or hypoxic cardiac membranes with CT has a less clear effect on the adenylate cyclase pathway. The present study has demonstrated that 1) NE does not mimic the effects of hypoxia at the cellular level, i.e., hypoxia has specific effects on cardiac adrenergic signaling, and 2) changes in alpha- and beta-adrenergic pathways are chamber specific and may depend on the type of stimulation (hypoxia or adrenergic).  相似文献   

3.
Chronic intermittent high altitude (IHA) hypoxia results in long-term adaptation protecting the heart against acute ischemia/reperfusion injury; however, molecular mechanisms of this phenomenon are not completely elucidated so far. The present study was aimed at investigation of a modulating effect of IHA hypoxia on the expression and/or activation of selected regulatory proteins, with particular emphasis on differential responses in the right ventricle (RV) and left ventricle (LV). Adult male Wistar rats were exposed to IHA hypoxia of 7000 m simulated in a hypobaric chamber (8 h/day, 25 exposures), and protein contents and activities in myocardial fractions were determined by Western blot analysis. In markedly hypertrophic RV of hypoxic rats, gelatinolytic activity of MMP-2 and protein levels of carbonic anhydrase IX (a marker of hypoxia) were significantly enhanced. Study of mitogen-activated protein kinases (MAPKs) revealed no differences in the contents of total p38-MAPK in both ventricles between the IHA and normoxic control rats, whereas activation of p38-MAPK was decreased in the RV and moderately increased in the LV of IHA rats as compared to controls. Extracellular signal regulated kinase-2 (ERK-2) was partially up-regulated in the RV of IHA rats, and, in addition, expression of acidic fibroblast growth factor (aFGF), a potential activator of ERK cascade, was also significantly increased. In contrast, expression of ERKs in the LV as well as their activities in both ventricles, were not affected by IHA hypoxia. Differential effects of IHA hypoxia on c-Jun-N-terminal protein kinases (JNKs) in the RV and LV were also observed. As compared with the controls, total content of JNKs was increased in the RV of the IHA rats, while expression of JNKs in the LV was down-regulated. IHA hypoxia changed neither total levels of Akt kinase in both RV and LV, nor Akt kinase activity in the RV. However, increased levels of activated phospho-Akt kinase were found in the LV of IHA rats. The results demonstrate that adaptation of rat hearts to chronic IHA hypoxia is associated with disctinct changes in the levels and/or activation of several regulatory proteins in two ventricles. The latter could be attributed to both myocardial remodeling and cardioprotection induced by chronic hypoxia.  相似文献   

4.
Adult male Wistar rats were exposed to intermittent high altitude hypoxia of 7000 m simulated in a hypobaric chamber for 8 h/day, 5 days a week; the total number of exposures was 25. The concentration of individual phospholipids and their fatty acid (FA) profile was determined in right (RV) and left (LV) ventricles. Adaptation to hypoxia decreased the concentration of diphosphatidylglycerol (DPG) in hypertrophied RV by 19% and in non-hypertrophied LV by 12% in comparison with normoxic controls. Chronically hypoxic hearts exhibited lower phospholipid n-6 polyunsaturated FA (PUFA) content mainly due to decreased linoleic acid (18:2n-6), which was opposed by increased n-3 PUFA mainly due to docosahexaenoic acid (22:6n-3) in phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). The content of arachidonic acid (20:4n-6) was unchanged in total phospholipids, but in PC it was increased in both ventricles (by 22%) and in PE decreased in LV only (by 20%). Chronic hypoxia increased the un-saturation index of PC and PE in both ventricles. The content of monounsaturated FA (MUFA) was increased and 18:2n-6 decreased in DPG. The proportion of saturated FA was increased in PC and PI of hypoxic RV but not LV. The FA composition of phosphatidylserine was not altered in hypoxic ventricles. It is concluded that chronic hypoxia led to only minor changes in individual phospholipid concentration in rat ventricular myocardium, but markedly altered their FA profile. These changes, in particular the greater incorporation of n-3 PUFA into phospholipids and increased un-saturation index, may lead to a better preservation of membrane integrity and thereby contribute to improved ischemic tolerance of chronically hypoxic hearts.  相似文献   

5.
Chronic hypoxic exposure results in elevated sympathetic activity leading to downregulation of myocardial alpha(1)- and beta-adrenoceptors (alpha(1)-AR, beta-AR). On the other hand, it has been shown that sympathetic activity is reduced by exercise training. The objective of this study was to determine whether exercise training could modify the changes in receptor expression associated with acclimatization. Four groups of rats were studied: normoxic sedentary rats (NS), rats living and training in normoxia (NTN), sedentary rats living in hypoxia (HS, inspired PO(2) = 110 Torr), and rats living and training in hypoxia (HTH, inspired PO(2) = 110 Torr). Training consisted of running in a treadmill at 80% of maximal O(2) uptake during 10 wk. Myocardial receptor density was measured by radioactive ligand binding. Right ventricular (RV) hypertrophy occurred in HS but not in HTH. No effect of exercise was detected in RV weight of normoxic rats. Acclimatization to hypoxia (HS vs. NS) resulted in a decrease in both alpha(1)- and beta-AR density, whereas muscarinic receptor (M-Ach) expression increased. Hypoxic exercise training (HS vs. HTH) moderated beta-AR downregulation and M-Ach upregulation and prevented the fall in alpha(1)-AR density. Normoxic training (NS vs. NTN) did not change beta-AR density. On the other hand, densities of alpha(1)-AR in both ventricles as well as RV M-Ach increased in NTN vs. NS. The data show that exercise training in hypoxia 1) prevents RV hypertrophy, 2) suppresses the downregulation of alpha(1)-AR in the left ventricle (LV) and RV, and 3) attenuates the changes in both beta-AR and M-Ach receptor density in LV and RV. Exercise training in normoxia increases M-Ach receptor expression in the RV.  相似文献   

6.
7.
Prolonged hypoxia leads to the development of pulmonary hypertension. Recent reports have suggested enhancement of heme oxygenase (HO), the major source of intracellular carbon monoxide (CO), prevents hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Therefore, we hypothesized that inhibition of HO activity by tin protoporphyrin (SnPP) would exacerbate the development of pulmonary hypertension. Rats were injected weekly with either saline or SnPP (50 micromol/kg) and exposed to hypobaric hypoxia or room air for 5 wk. Pulmonary and carotid arteries were catheterized, and animals were allowed to recover for 48 h. Pulmonary and systemic pressures, along with cardiac output, were recorded during room air and acute 10% O2 breathing in conscious rats. No difference was detected in pulmonary artery pressure between saline- and SnPP-treated animals in either normoxic or hypoxic groups. However, blockade of HO activity altered both systemic and pulmonary vasoreactivity to acute hypoxic challenge. Despite no change in baseline pulmonary artery pressure, all rats treated with SnPP had decreased ratio of right ventricular (RV) weight to left ventricular (LV) plus septal (S) weight (RV/LV + S) compared with saline-treated animals. Echocardiograms suggested dilatation of the RV and decreased RV function in hypoxic SnPP-treated rats. Together these data suggest that inhibition of HO activity and CO production does not exacerbate pulmonary hypertension, but rather that HO and CO may be involved in mediating pulmonary and systemic vasoreactivity to acute hypoxia and hypoxia-induced RV function.  相似文献   

8.
The left ventricle (LV) and right ventricle (RV) have differing hemodynamics and embryological origins, but it is unclear whether they are regulated differently. In particular, no previous studies have directly compared the LV versus RV myocardial inotropic responses to alpha(1)-adrenergic receptor (alpha(1)-AR) stimulation. We compared alpha(1)-AR inotropy of cardiac trabeculae from the LV versus RV of adult mouse hearts. As previously reported, for mouse RV trabeculae, alpha(1)-AR stimulation with phenylephrine (PE) caused a triphasic contractile response with overall negative inotropy. In marked contrast, LV trabeculae had an overall positive inotropic response to PE. Stimulation of a single subtype (alpha(1A)-AR) with A-61603 also mediated contrasting LV/RV inotropy, suggesting differential activation of multiple alpha(1)-AR-subtypes was not involved. Contrasting LV/RV alpha(1)-AR inotropy was not abolished by inhibiting protein kinase C, suggesting differential activation of PKC isoforms was not involved. However, contrasting LV/RV alpha(1)-AR inotropic responses did involve different effects on myofilament Ca(2+) sensitivity: submaximal force of skinned trabeculae was increased by PE pretreatment for LV but was decreased by PE for RV. For LV myocardium, alpha(1)-AR-induced net positive inotropy was abolished by the myosin light chain kinase inhibitor ML-9. This study suggests that LV and RV myocardium have fundamentally different inotropic responses to alpha(1)-AR stimulation, involving different effects on myofilament function and myosin light chain phosphorylation.  相似文献   

9.
Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats were exposed to 4 weeks CHH (11% O(2)) versus normoxic controls. RV/body weight ratio increased (P < 0.001 vs. control) while RV systolic and developed pressures were higher. However, LV systolic and developed pressures were significantly reduced. Mitochondrial O(2) consumption was sustained in the hypertrophied RV, ADP/O increased (P < 0.01 vs. control) and proton leak significantly decreased. Conversely, LV mitochondrial O(2) consumption was attenuated (P < 0.05 vs. control) and proton leak significantly increased. In parallel, expression of mitochondrial regulators was upregulated in the hypertrophied RV but not the LV. Our data show that the hypertrophied RV induces expression of mitochondrial regulatory genes linking respiratory capacity and enhanced efficiency to sustained contractile function.  相似文献   

10.
G proteins-coupled signaling pathways appear to play a role in the development of cardiac hypertrophy and its progression to heart failure. The present study aimed to investigate trimeric G proteins and adenylyl cyclase signaling in immature as well as in adult rat myocardium during this process caused by pressure overload. Pressure overload was induced in newborn (2-day-old) rats by abdominal aortic banding and myocardial preparations from left ventricular myocardium of immature (10-day-old) and adult (90-day-old) animals were analyzed for the relative content of different G protein subunits and adenylyl cyclase (AC) by immunoblotting with specific antibodies. A functional status of the AC signaling system was also evaluated. Normal maturation of rat heart was accompanied by increased expression of AC type V/VI and VII and of the long isoform (G(s)alphaL) of G(s)alpha protein. In parallel, the amounts of myocardial G(i)alpha/G(o)alpha proteins tended to decrease, and G(q)alpha/G(11)alpha and Gbeta did not change. Interestingly, whereas fluoride-stimulated AC activity increased in the course of maturation, activity of AC measured under other experimental conditions (stimulation by Mn2+, forskolin or isoproterenol) was lower in adult than in young rat myocardium. Pressure overload did not influence distribution of G proteins in immature myocardium, but considerably decreased the content of G(s)alphaL and increased G(o)alpha proteins in hearts of 90-day-old rats. These hearts exhibited worsened functional reserve as compared to age-matched controls and activity of AC was also markedly lower. A considerable reduction in Mn(2+)-stimulated AC activity together with similar decrease in AC activity determined under other stimulation conditions suggests that it is a function of AC catalytic subunit that is primarily impaired in this model of pressure overload.  相似文献   

11.
目的:探讨慢性低氧3周对大鼠左右心室的影响以及规范性瞬时感受器电位亚家族(TRPC)在慢性低氧诱导的右心室心肌肥厚中的表达。方法:将SD雄性大鼠48只随机分为对照组(CON组)和慢性低氧肺动脉高压模型组(CH组)(n=24),CH组将大鼠置于连续的慢性低氧(10%±0.2%)环境饲养三周以诱导大鼠发生心肌肥厚。通过左、右心室插管法测定右心室内压(RVSP)、左心室内压(LVSP)、心率(HR)、平均体循环动脉压(mSAP)、左、右心室内压力最大上升速率(+dp/dtmax)、最大下降速率(-dp/dkmax)、右心肥大指数(RVMI)、左心肥大指数(LVMI);HE染色观察左、右心室心肌组织切片;通过SYBR Green荧光定量PCR法检测CON组、CH组大鼠的肥厚侧心室心肌组织编码TRPC 1/3/4/5/6/7的rnRNA表达;结合real-time RT-PCR结果对mRNA表达有显著变化的TRPC亚型通过免疫印迹法检测相应蛋白的表达。结果:与CON组相比:CH组的RVSP、RVMI、右心室±dp/dtmax显著增高(P〈0.01),LVSP、左心室±dp/dmax无显著变化,LVMI显著降低(P〈0.01);CH组右心室心肌细胞显著增粗(P〈0.01),细胞内肌原纤维数量增多,心肌纤维排列紊乱,细胞核深染,形状不整;左心室心肌纤维无明显改变;CH组编码TRPCI的mRNA和蛋白显著增高(P〈0.05),而编码其余TRPC亚型的mRNA无显著变化。结论:慢性低氧3周可特异性诱导sD大鼠产生右心室心肌肥厚,上调了编码右心室心肌细胞TRPCI通道蛋白的mRNA和蛋白的表达,TRPCI可能参与了心肌肥厚的发生发展。  相似文献   

12.
Distribution of the alpha subunit of the stimulatory G protein (G(s)alpha) was analyzed in membrane and cytosolic (supernatant 200 000 g) fractions from rat cortex, thalamus and hippocampus during the course of post-natal development. In parallel, changes in beta-adrenoceptor density and adenylyl cyclase activity were determined. Long (G(s)alphaL) and short (G(s)alphaS) variants of G(s)alpha were assessed by immunoblotting using specific polyclonal antisera reacting with both G(s)alpha isoforms. Post-natal development was associated with an increase in the total amount of brain G(s)alpha. G(s)alphaL was the dominant isoform of G(s)alpha in the membrane fractions of all studied brain regions and its amount increased markedly between post-natal day (PD) 1 and 90. The level of membrane-bound G(s)alphaS also elevated during post-natal development, but more pronounced changes were found in cytosolic G(s)alphaS. Although only a small amount of G(s)alphaS (much smaller than G(s)alphaL) was detected among soluble proteins shortly after birth, G(s)alphaS prevailed over G(s)alphaL at PD90. The G(s)alphaL/G(s)alphaS ratio decreased, respectively, from 3.2 to 1.2 and from 5.0 to 1.5 in the membrane fractions of cortex and hippocampus, but remained almost constant in thalamus between PD1 and 90. More dramatic changes were found in the cytosolic fractions of all studied brain regions: the G(s)alphaL/G(s)alphaS ratio decreased sharply in cortex (from 14.1 to 0.9), hippocampus (from 3.7 to 0.8), and also in thalamus (from 9.5 to 0.5). These results demonstrate that the membrane-cytosol balance of G(s)alpha proteins alters dramatically during the course of brain development. Both G(s)alphaL and G(s)alphaS were expressed in a region- and age-specific manner, which suggests different roles in the maturation of the brain tissue. A cyc(-) reconstitutive assay of cytosolic G(s)alpha indicated that only approximately 20% of this protein was functional, compared with membrane-bound G(s)alpha, and its ability to reconstitute adenylyl cyclase activity increased during the course of maturation. The number of beta-adrenoceptors increased sharply during early post-natal development but only slightly in adulthood, and both GTP- and isoproterenol-stimulated adenylate cyclase activity reached peak values around PD12.  相似文献   

13.
Fetal programming has profound effects on cardiovascular function in later adult life. We tested the hypothesis that chronic hypoxic exposure during fetal development downregulates endogenous cardioprotective mechanisms in adult rats. Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation) groups. The male progeny were studied at 2 mo of age. Rats were subjected to heat stress (42 degrees C for 15 min). After 24 h, hearts were excised and subjected to 30 min of global ischemia and 1 h of reperfusion. Prenatal hypoxia did not change adult rat body weight and heart weight, but significantly increased the cross-sectional area of a left ventricular (LV) myocyte. Heat stress significantly improved postischemic recovery of LV function in normoxic control rats, but not in prenatally hypoxic rats. The infarct size in the LV resulting from ischemia-reperfusion was reduced by the heat stress pretreatment in control rats, but not in prenatally hypoxic rats. In accordance, heat stress significantly increased LV myocardial content of heat shock protein 70 only in normoxic control rats. In addition, there was a significant decrease in the LV myocardial content of the PKC-epsilon isoform in prenatally hypoxic rats compared with control rats. We conclude that prenatal hypoxia causes in utero programming of hsp70 gene in the LV, leading to an inhibition of its response to heat stress and a loss of cardioprotection in later adult life.  相似文献   

14.
We administered antifibrotic agent beta-aminopropionitrile (BAPN) to rats exposed to 10% O2-90% N2 for 3 wk to prevent excess vascular collagen accumulation. Groups of Sprague-Dawley rats studied were air breathing, hypoxic, and hypoxic treated with BAPN, 150 mg/kg twice daily intraperitoneally. After the 3-wk period, we measured mean right ventricular pressure (RVP), the ratio of weight of right ventricle to left ventricle plus septum (RV/LV + S), and hydroxyproline content of the main pulmonary artery (PA) trunk. Hypoxia increased RVP from 14 to 29 mmHg; RVP was 21 mmHg in hypoxic BAPN-treated animals. Hypoxia increased the RV/LV + S ratio from 0.28 to 0.41; the ratio was 0.32 in hypoxic BAPN-treated animals. Hypoxia increased PA hydroxyproline from 20 to 239 micrograms/artery; hydroxyproline was 179 micrograms/artery in hypoxic BAPN-treated animals. Thus BAPN prevented pulmonary hypertension, right ventricular hypertrophy, and excess vascular collagen produced by hypoxia. We conclude that vascular collagen contributes to the maintenance of chronic hypoxic pulmonary hypertension.  相似文献   

15.
The activities of cardiac protein kinase C (PKC) were examined in hemodynamically assessed rats subsequent to myocardial infarction (MI). Both Ca(2+)-dependent and Ca(2+)-independent PKC activities increased significantly in left ventricular (LV) and right ventricular (RV) homogenates at 1, 2, 4, and 8 wk after MI was induced. PKC activities were also increased in both LV and RV cytosolic and particulate fractions from 8-wk infarcted rats. The relative protein contents of PKC-alpha, -beta, -epsilon, and -zeta isozymes were significantly increased in LV homogenate, cytosolic (except PKC-alpha), and particulate fractions from the failing rats. On the other hand, the protein contents of PKC-alpha, -beta, and -epsilon isozymes, unlike the PKC-zeta isozyme, were increased in RV homogenate and cytosolic fractions, whereas the RV particulate fraction showed an increase in the PKC-alpha isozyme only. These changes in the LV and RV PKC activities and protein contents in the 8-wk infarcted animals were partially corrected by treatment with the angiotensin-converting enzyme inhibitor imidapril. No changes in protein kinase A activity and its protein content were seen in the 8-wk infarcted hearts. The results suggest that the increased PKC activity in cardiac dysfunction due to MI may be associated with an increase in the expression of PKC-alpha, -beta, and -epsilon isozymes, and the improvement of heart function in the infarcted animals by imidapril may be due to partial prevention of changes in PKC activity and isozyme contents.  相似文献   

16.
Dexamethasone (Dex) treatment during a critical period of lung development causes lung hypoplasia in infant rats. However, the effects of Dex on the pulmonary circulation are unknown. To determine whether Dex increases the risk for development of pulmonary hypertension, we treated newborn Sprague-Dawley rats with Dex (0.25 microg/day, days 3-13). Litters were divided equally between Dex-treated and vehicle control (ethanol) rats. Rats were raised in either room air until 10 wk of age (normoxic groups) or room air until 7 wk of age and then in a hypoxia chamber (inspired O(2) fraction = 0.10; hypoxic groups) for 3 wk to induce pulmonary hypertension. Compared with vehicle control rats, Dex treatment of neonatal rats reduced alveolarization (by 42%; P < 0.05) and barium-filled pulmonary artery counts (by 37%; P < 0.05) in 10-wk-old adults. Pulmonary arterial pressure and the ratio of right ventricle to left ventricle plus septum weights (RV/LV+S) were higher in 10-wk-old Dex-treated normoxic rats compared with those in normoxic control rats (by 16 and 16% respectively; P < 0.05). Small pulmonary arteries of adult normoxic Dex-treated rats showed increased vessel wall thickness compared with that in control rats (by 15%; P < 0.05). After 3 wk of hypoxia, RV/LV+S values were 36% higher in rats treated with Dex in the neonatal period compared with those in hypoxic control rats (P < 0.05). RV/LV+S was 42% higher in hypoxic control rats compared with those in normoxic control rats (P < 0.05). We conclude that Dex treatment of neonatal rats caused sustained lung hypoplasia and increased pulmonary arterial pressures and augmented the severity of hypoxia-induced pulmonary hypertension in adult rats.  相似文献   

17.
OBJECTIVE: To investigate how the morphological and physiological properties of single myocytes isolated from the hypertrophied, failing left ventricles (LV) differ from those of normal or hypertrophied not failing ventricles. METHOD: Single myocytes were isolated separately from right (RV) and left ventricles (LV) of male spontaneously hypertensive rats (SHR) or Wistar-Kyoto (WKY) rats at the age of 6 and 12 months and of SHRs which developed or not developed heart failure at the age of 20-24 months. We measured cells dimensions, range and kinetics of electrically stimulated or initiated by caffeine contractions and Ca2+ transients, and investigated the response of cells to thapsigargin. RESULTS: The transversal dimensions of the LV myocytes of 6 months old SHRs showed approximately 20% increase with respect to transversal dimensions of their RV myocytes and LV and RV myocytes of WKY rats. The difference did not change with progressing age and in the heart failure. The LV myocytes of 6 or 12 months old SHRs showed slowed kinetics of the Ca2+ transients and of contraction and relaxation and decreased contractile response to 2 s superfusion with 15 mM caffeine preceded by 5 mM Ni2+ used as an index of the sarcoplasmic reticulum (SR) Ca2+ content. Despite of this the range of shortening and relative contribution of the SR to contraction (assessed by measuring of the residual contractile response to electrical stimulation in cells poisoned with thapsigargin) or relaxation (assessed by calculation of the ratio of rate constants of the electrically stimulated and stimulated by 30 s superfusion with caffeine Ca2+ transients) was not altered in the hypertrophied myocytes. Properties of the LV myocytes of the 20-24 old SHRs with or without heart failure did not differ from those of LV myocytes of younger SHRs. The contractile response to caffeine of their RV myocytes dropped to the level of that in the LV myocytes. CONCLUSION: Our results suggest that transition from the compensated hypertrophy to the heart failure in 20-24 months old SHRs did not result from the further changes in properties of the surviving myocytes. Data from literature suggest that myocyte apoptosis and remodeling of the extramyocyte space is the more likely reason.  相似文献   

18.
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to approximately 60% of systemic level and a twofold increase in RV mass (P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 microg.kg(-1).min(-1)) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 microg.kg(-1).min(-1)), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 microg.kg(-1).min(-1)) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.  相似文献   

19.
Chronic hypoxia protects the heart against injury caused by acute oxygen deprivation, but its salutary mechanism is poorly understood. The aim was to find out whether cardiomyocytes isolated from chronically hypoxic hearts retain the improved resistance to injury and whether the mitochondrial large-conductance Ca2+-activated K+ (BKCa) channels contribute to the protective effect. Adult male rats were adapted to continuous normobaric hypoxia (inspired O2 fraction 0.10) for 3 wk or kept at room air (normoxic controls). Myocytes, isolated separately from the left ventricle (LVM), septum (SEPM), and right ventricle, were exposed to 25-min metabolic inhibition with sodium cyanide, followed by 30-min reenergization (MI/R). Some LVM were treated with either 30 μM NS-1619 (BKCa opener), or 2 μM paxilline (BKCa blocker), starting 25 min before metabolic inhibition. Cell injury was detected by Trypan blue exclusion and lactate dehydrogenase (LDH) release. Chronic hypoxia doubled the number of rod-shaped LVM and SEPM surviving the MI/R insult and reduced LDH release. While NS-1619 protected cells from normoxic rats, it had no additive salutary effect in the hypoxic group. Paxilline attenuated the improved resistance of cells from hypoxic animals without affecting normoxic controls; it also abolished the protective effect of NS-1619 on LDH release in the normoxic group. While chronic hypoxia did not affect protein abundance of the BKCa channel regulatory β1-subunit, it markedly decreased its glycosylation level. It is concluded that ventricular myocytes isolated from chronically hypoxic rats retain the improved resistance against injury caused by MI/R. Activation of the mitochondrial BKCa channel likely contributes to this protective effect.  相似文献   

20.
Chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodeling in rats. Because platelet-activating factor (PAF) levels increase in lung lavage fluid and in plasma from chronically hypoxic rats, we examined the effect of two specific, structurally unrelated PAF antagonists, WEB 2170 and BN 50739, on hypoxia-induced pulmonary vascular remodeling. Treatment with either agent reduced hypoxia-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk of hypoxic exposure (simulated altitude 5,100 m) but did not affect cobalt (CoCl2)-induced pulmonary hypertension. The PAF antagonists had no effect on the hematocrit of normoxic or chronically hypoxic rats or CoCl2-treated rats. Hypoxia-induced pulmonary hypertension was associated with an increase in the vessel wall thickness of the muscular arteries and reduction in the number of peripheral arterioles. In WEB 2170-treated rats, these changes were significantly less severe than those observed in untreated chronically hypoxic rats. PAF receptor blockade had no acute hemodynamic effects; i.e., it did not affect pulmonary arterial pressure or cardiac output nor did it affect the magnitude of acute hypoxic pulmonary vasoconstriction in awake normoxic or chronically hypoxic rats. Isolated lungs from chronically hypoxic rats showed a pressor response to the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) and an increase in the number of leukocytes lavaged from the pulmonary circulation. In vivo treatment with WEB 2170 significantly reduced the fMLP-induced pressor response compared with that observed in isolated lungs from untreated chronically hypoxic rats. These results suggest that PAF contributes to the development of chronic pulmonary hypertension induced by chronic hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号