首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wachsman, J. T. (University of Illinois, Urbana), and L. Hogg. Use of thymineless death to enrich for doubly auxotrophic mutants of Bacillus megaterium. J. Bacteriol. 87:1118-1122. 1964.-When strain KM:T(-), a thymine auxotroph of Bacillus megaterium strain KM, is allowed to undergo thymineless death on a minimal medium, the survivors are greatly enriched in polyauxotrophic mutants. Cells were irradiated with ultraviolet light, grown in the presence of thymidine and a complete amino acid mixture, and then starved for thymidine in the absence of amino acids. Doubly auxotrophic mutants (thymine(-) amino acid(-)) may account for more than 90% of the survivors. The most reproducible results were obtained when sucrose (0.4 m) was added to both growth and starvation media. Although the percentage of mutants among the survivors increases with the time of thymine starvation, the absolute number of double auxotrophs per milliliter decreases. It is probable that the extent of cross-feeding determines both the mutant yield and the mutants types. Substrains of KM:T(-) having additional requirements for each of the following amino acids have been isolated: histidine, threonine, tyrosine, tryptophan, arginine, isoleucine, methionine, serine, and cysteine.  相似文献   

2.
Inhibition of DNA replication with hydroxyurea during thymine starvation of Escherichia coli shows that active DNA synthesis is not required for thymineless death (TLD). Hydroxyurea experiments and thymine starvation of lexA3 and uvrA DNA repair mutants rule out unbalanced growth, the SOS response, and nucleotide excision repair as explanations for TLD.  相似文献   

3.
4.
Little information is available concerning the metabolic fate of radiation-induced thymine base damage products once they have been excised from DNA. The present study was an attempt to determine whether or not thymine-requiring mutants of Escherichia coli could grow on dihydrothymine (DHT) and thymine glycol (TG) by "salvaging" the altered thymines. A second test of thymine product utilization was prevention of thymineless radiosensitization. Results showed that very low growth of Thy- cells on DHT or TG could be explained by the presence of less than or equal to 1% contaminating thymine in the mixtures. Radiation dose-modification factors (DMFs) for thyA cells fed DHT or TG for 3 h were 1.38 +/- 0.28 and 1.26 +/- 0.24, respectively, whereas the DMF for 3 h thymine-starved cells was 1.63 +/- 0.05. The small (approximately 25%) amelioration of thymineless radiosensitization observed in DHT- or TG-fed cells could probably be explained by contaminating thymine in the medium. Although DHT is a normal metabolite in some cells, neither DHT nor TG could be used efficiently by thymine-requiring cells in the protocol presented.  相似文献   

5.
Cell death due to thymine (dThd) deficiency, associated with the cytotoxic action of 5-fluorouracil in colon cancer, is regulated in thymidylate synthase-deficient (TS(-)) human colon carcinoma cells via the Fas (CD95, APO-1) death receptor. This was demonstrated by inhibiting the loss in clonogenicity of TS(-) cells by anti-FasL and in enhanced survival of TS(-) clones selected for resistance to Fas-mediated apoptosis, following dThd deprivation. During thymineless stress in TS(-) cells, Fas ligand (FasL) is expressed, and its promoter (hFasLPr) is activated. Transactivation of hFasLPr, dependent upon dThd deficiency, was inhibited following mutation of the binding sites for NF-kappaB or AP-1 and by preventing NF-kappaB or AP-1 activation, which inhibited expression of FasL and enhanced clonogenic survival in stable transformants expressing IkappaBalphaM or DN-MEKK, respectively. These results demonstrate the crucial roles for NF-kappaB and AP-1 in the regulation of FasL in Fas-mediated thymineless death of colon carcinoma cells.  相似文献   

6.
R J Pinney 《Microbios》1977,19(75):55-66
Minimum satisfactory concentrations of thymine and thymidine were determined for the growth of a high thymine-requirng (thy) mutant to Escherichia coli strain J5-3. Cultures were then grown in the presence of these concentrations of non-radioactive ('cold') pyrimidine together with 5 microCi/ml [methyl-3H)thymine, or [methyl-3H)thymidine (specific activities 5 Ci/m mole), and the uptake of radioactivity into ice cold trichloroacetic acid insoluble material determined. By far the most efficient labelling system was obtained if the label was supplied as radioactive thymidine and growth requirements satisfied by thymine alone. The addition of deoxyadenosine to the labelled thymidine/unlabelled thymine system dramatically reduced uptake of label. The addition of radioactive thymine with either thymine or thymidine to ensure satisfactory growth gave poor labelling. Using the [methyl-3H] thymidine/thymine system it was possible to increase the concentration of thymine from 8 to 64 microgram/ml with only a 25% reduction in label uptake after a 2 h period. The same system was also shown to be most efficient for labelling a thy derivative of another K12 strain, a thymine low-requiring (tir) K12 strain, a thy mutant of Klebsiella aerogenes 418 and a tir derivative of Salmonella typhimurium LT2.  相似文献   

7.
Thymine requiring mutants of rec+ and recB- Escherichia coli strains have been tested for their response to thymine deprivation. Exonuclease V-deficient mutant is less sensitive to thymine deprivation than the wild type strain, because there is no lag period at thymineless death of recB- thy- cells. However, the mechanism of thymineless death of thy- rec+ and thy- recB- cells may be different. Two types of thymineless death are proposed to exist. The first type is due to DNA primary structure damages (single-strand breaks or gaps), accompanied by DNA degradation. The restoration of the balance disturbed by the thymine deprivation between DNA and protein synthesis rates by their balanced inhibition promotes a complete repair of structural damages in DNA and prevents the death of rec+ cells. The second type of thymineless death is not linked with the formation of DNA damages, and this is observed in recB- thy- mutant, defective in exonuclease V.  相似文献   

8.
The interference of dnaB mutations of Escherichia coli with thymineless death is described. All the isogenic Thy- dnaB mutants of E. coli we have tested show a remarkable immunity towards cell death induced by thymine deprivation at the nonpermissive temperature. We have also constructed and tested an isogenic double dnaB dnaG mutant. It loses its viability in the absence of thymine at both permissive and nonpermissive temperatures. The role of the dnaB gene product is discussed.  相似文献   

9.
In 1954, Cohen and Barner discovered that a thymine auxotrophic (thyA) mutant of Escherichia coli undergoes cell death in response to thymine starvation. This phenomenon, called thymineless death (TLD), has also been found in many other organisms, including prokaryotes and eukaryotes. Though TLD has been studied intensively, its molecular mechanism has not yet been explained. Previously we reported on the E. coli mazEF system, a regulatable chromosomal suicide module that can be triggered by various stress conditions. MazF is a stable toxin, and MazE is an unstable antitoxin. Here, we show that cell death that is mediated by the mazEF module can also be activated by thymine starvation. We found that TLD depends on E. coli mazEF and that under thymine starvation, the activity of the mazEF promoter P(2) is significantly reduced. Our results, which describe thymine starvation as a trigger for a built-in death program, have implications for programmed cell death in both prokaryotes and eukaryotes.  相似文献   

10.
Kinetics of thymineless death for Escherichia coli 15 TAU-bar from plating on solid medium were compared with those from direct observations of single cells under a microscope. The latter method did not involve any physical change of the medium. The kinetics obtained for the two methods were identical. This rules out the assumption that in E. coli 15 TAU-bar death from the thymine deprivation is directly associated with the plating procedure.  相似文献   

11.
To probe the mechanisms of mutagenesis induced by thymine starvation, we examined the mutational specificity of this treatment in strains of Escherichia coli that are wild type (Ung+) or deficient in uracil-DNA-glycosylase (Ung-). An analysis of Ung+ his-4 (ochre) revertants revealed that the majority of induced DNA base substitution events were A:T----G:C transitions. However, characterization of lacI nonsense mutations induced by thymine starvation demonstrated that G:C----A:T transitions and all four possible transversions also occurred. In addition, thymineless episodes led to reversion of the trpE9777 frameshift allele. Although the defect in uracil-DNA-glycosylase did not appear to affect the frequency of total mutations induced in lacI by thymine deprivation, the frequency of nonsense mutations was reduced by 30%, and the spectrum of nonsense mutations was altered. Furthermore, the reversion of trpE9777 was decreased by 90% in the Ung- strain. These findings demonstrate that in E. coli, thymine starvation can induce frameshift mutations and all types of base substitutions. The analysis of mutational specificity indicates that more than a single mechanism is involved in the induction of mutation by thymine depletion. We suggest that deoxyribonucleoside triphosphate pool imbalances, the removal of uracil incorporated into DNA during thymine starvation, and the induction of recA-dependent DNA repair functions all may play a role in thymineless mutagenesis.  相似文献   

12.
The relationship between chromosome replication and cell division was investigated in a thymineless mutant of Escherichia coli B/r. Examination of the changes in average cell mass and DNA content of exponential cultures resulting from changes in the thymine concentration in the growth medium suggested that as the replication time (C) is increased there is a decrease in the period between termination of a round of replication and the subsequent cell division (D). Observations on the pattern of DNA synthesis during the division cycle were consistent with this relationship. Nevertheless, the kinetics of transition of exponential cultures moving between steady states of growth with differing replication velocities provided evidence to support the view that the time of cell division is determined by termination of rounds of replication under steady-state conditions.  相似文献   

13.
Survival and the synthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein were measured during incubation of a thymine auxotroph of Escherichia coli in a series of media containing thymine concentrations below the optimal level of 2 mug/ml. The rate of increase in viable count gradually diminishes to no net growth with 0.2 mug/ml. With lower concentrations of thymine, the rate of cell death gradually increases, resulting in a typical thymineless death curve with 0.02 mug/ml. Both the rate of cell growth and the rate of cell inactivation vary linearly with the thymine concentration. Thirty minutes of incubation in media containing limiting concentrations of thymine before a shift to complete thymine starvation results in a progressive decrease in the length of the lag period preceding thymineless death. These data suggest that only one type of cellular damage occurs during the various degrees of thymine limitation. Prolonged preincubation in media containing 0.1 to 0.2 mug/ml of thymine results in an immunity to thymineless death. This immunity differs from that observed with amino acid-starved cells in its kinetics; ultraviolet irradiation of preincubated cells indicates that the cells are inactivated at the same rate as log-phase cells. These results suggest that the immunity is not associated with chromosome alignment. Thymine concentrations between 2 mug/ml and 0.2 mug/ml permit essentially the same amount of protein and RNA synthesis. The total amount of synthesis then decreases linearly to 40 to 50% of the control level with further reduction in the amount of thymine present. Protein and RNA synthesis are first affected at the same thymine concentration at which lethality is first detectable, and this correlation suggests that the synthesis of these macromolecules is involved in the mechanism of thymineless death. DNA synthesis, on the other hand, is directly dependent on the thymine concentration for levels of 0.5 mug/ml or less. There are no critical changes in DNA synthesis associated with lethality, and DNA synthesis is still occurring under conditions of thymine limitation which result in immunity. These observations suggest that DNA synthesis is not directly involved in thymineless death.  相似文献   

14.
Thymine-requiring mutants of Micrococcus radiodurans have been isolated by selection on solid medium containing trimethoprim. Strains requiring either high concentrations of thymine (50 μg/ml) or low concentrations (2 μg/ml) for normal growth were obtained. The Thy mutant requiring low thymine concentrations has been characterized. It was shown to retain the high ultraviolet light (UV) resistance typical of wild-type M. radiodurans, but it was not resistant to thymineless death. Preliminary exposure of the cells to thymineless conditions resulted in enhanced UV sensitivity, and this interaction occurred under conditions where “unbalanced growth” was inhibited by the addition of chloramphenicol. Upon addition of thymine to deprived cells, UV resistance was gradually restored, and this recovery took place in the absence of protein synthesis. A model is proposed to account for the similarity of thymineless death in bacteria whose deoxyribonucleic acid repair efficiencies differ widely.  相似文献   

15.
Utilization of 5-Bromouracil by Thymineless Bacteria   总被引:8,自引:5,他引:3       下载免费PDF全文
Several thymineless Escherichia coli strains have been examined for their ability to replicate their deoxyribonucleic acid when bromouracil is substituted for thymine. The procedure we describe was used to identify a thymineless strain with characteristics relatively favorable to its use in bromouracil labeling experiments. In addition, mutants with an “absolute” thymine requirement could be easily distinguished from one with a “leaky” thymine requirement.  相似文献   

16.
Both Bacillus megaterium KM:T(-)R(1), a strain partially resistant to thymineless death, and strain KM:T(-), the parent strain, can satisfy their thymine requirement with either thymidine, 5-methyldeoxycytidine, or 5-methyluridine. Neither strain can use 5-methylcytosine, 5-hydroxymethylcytosine, 5-hydroxymethyluracil, or 5-aminouracil for this purpose. Strain KM:T(-)R(1) requires as little as 0.01 mM thymine for maximum growth, whereas strain KM:T(-) requires 0.10 to 0.20 mM thymine. Lysogenic KM:T(-)R(1) dies more rapidly in the presence of mitomycin C than the corresponding phage-sensitive strain. Unexpectedly, the lysogenic strain was found to be less sensitive to thymineless death than the phage-sensitive strain. Lysogenic KM:T(-)R(1) is induced by exposure to mitomycin C and by thymineless incubation. It is concluded that thymineless death occurs by a mechanism which is unrelated to phage induction and that a major lethal effect of mitomycin C is probably a consequence of phage induction.  相似文献   

17.
18.
Thymineless death has been studied in four different Thy(-) strains of Escherichia coli by using various assay methods including conventional plating techniques as well as one performed entirely in liquid medium. Plating on L agar resulted in a greater loss in viability than the other assay methods, but this extrasensitivity of starved cells to L-agar plating quickly disappeared upon readdition of thymine to the starved cultures. This indicated that cellular damage responsible for the additional killing on L agar is reversible. The results obtained by three other assay methods, the liquid assay, plating on nutrient agar, or plating on tris(hydroxymethyl)aminomethane-minimal agar, did not differ significantly from each other with all strains tested except strain JG 151. In this strain thymineless death was much faster when assayed in the liquid system than by plating. It is suggested that thymineless death detected on nutrient or minimal agar is not a result of plating, but that the lethal event actually occurs during the period of thymine starvation.  相似文献   

19.
R factor 1818 is shown to be eliminated from a thymineless strain of Escherichia coli J6-2 (R-1818) during thymine starvation. Readdition of thymine to the starved cultures produces a partial recovery in viable count but does not affect the proportion of R(-) cells. The R factor is not cured from exponential- or stationary-phase cultures which are starved of required amino acids as well as thymine, nor from cells which are deprived of thymine in the presence of chloramphenicol. However, in both of these cases, the extent of thymineless death is reduced. It is suggested that protein synthesis is a requirement for R-1818 elimination, and the possible nature of this protein is discussed.  相似文献   

20.
A thymidylate (dTMP) synthetase-deficient murine mammary carcinoma cell line (FM3A/TS-), auxotrophic for thymidine (dThd), proved extremely useful for studying the dependence of cell growth on the exogenous supply of dThd, the relation between cell growth and DNA synthesis, and the ability of a series of 25 5-substituted 2'-deoxyuridines (dUrd) to substitute for dThd in sustaining cell growth. FM3A/TS-cells did not proliferate unless dThd was supplied to the cell culture medium. The 5-halogenated dUrd derivatives 5-chloro-dUrd, 5-bromo-dUrd and 5-iodo-d Urd also sustained FM3A/TS- cell growth. The extents of incorporation of [methyl-3H]dThd and 5-iodo-[6-3H]dUrd into DNA were closely correlated with their stimulatory effects on FM3A/TS- cell growth. This suggests that the stimulatory effects of the dUrd analogues on the growth rate of FM3A/TS- cells may be considered as evidence for their incorporation into host cell DNA. Based on this premise it is postulated that, in addition to 5-chloro-dUrd, 5-bromo-dUrd, 5-iodo-dUrd and dThd itself, the following dThd analogues are also incorporated into FM3A/TS- cell DNA (in order of the extent to which they are incorporated): 5-hydroxy-dUrd greater than 5-propynyloxy-dUrd greater than 5-ethyl-dUrd greater than 5-ethynyl-dUrd approximately 5-vinyl-dUrd. Thus, the dTMP synthetase-deficient FM3A/TS- cell line represents a unique system to dissociate the de novo and salvage pathways of dTMP biosynthesis and to distinguish those dUrd analogues that are incorporated into DNA from those that are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号