首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously presented evidence that cultured alveolar epithelial cell monolayers actively transport sodium from medium to substratum, a process that can be inhibited by sodium transport blockers and stimulated by beta-agonists. In this study, the isolated perfused rat lung was utilized in order to investigate the presence of active sodium transport by intact adult mammalian alveolar epithelium. Radioactive tracers (22Na and [14C]sucrose) were instilled into the airways of isolated Ringer-perfused rat lungs whose weight was continuously monitored. The appearance of isotopes in the recirculated perfusate was measured, and fluxes and apparent permeability-surface area products were determined. A pharmacological agent (amiloride, ouabain, or terbutaline) was added to the perfusate during each experiment after a suitable control period. Amiloride and ouabain resulted in decreased 22Na fluxes and a faster rate of lung weight gain. Terbutaline resulted in increased 22Na flux and a more rapid rate of lung weight loss. [14C]sucrose fluxes were unchanged by the presence of these pharmacological agents. These data are most consistent with the presence of a regulable active component of sodium transport across intact mammalian alveolar epithelium that leads to removal of sodium from the alveolar space, with anions and water following passively. Regulation of the rate of sodium and fluid removal from the alveolar space may play an important role in the prevention and/or resolution of alveolar pulmonary edema.  相似文献   

2.
Differentiation of epithelial Na+ channel function. An in vitro model   总被引:1,自引:0,他引:1  
Confluent monolayers of epithelial cells grown on nonporous support form fluid-filled hemicysts called domes, which reflect active ion transport across the epithelium. Clara-like H441 lung adenocarcinoma cells grown on glass supports and exposed to 50 nM dexamethasone developed domes in a time-dependent fashion. Uplifting of small groups of cells occurred within 6-12 h, well formed domes appeared between 24 and 48 h, and after 7 days, individual domes started to merge. Cells inside of domes compared with those outside domes, or with monolayers not exposed to dexamethasone, differed by higher surfactant production, an increased cytokeratin expression, and the localization of claudin-4 proteins to the plasma membrane. In patch clamp studies, amiloride-blockable sodium currents were detected exclusively in cells inside domes, whereas in cells outside of domes, sodium crossed the membrane through La3+-sensitive nonspecific cation channels. Cells grown on permeable support without dexamethasone expressed amiloride-sensitive currents only after tight electrical coupling was achieved (transepithelial electrical resistance (R(t)) > 1 kilohm). In real-time quantitative PCR experiments, the addition of dexamethasone increased the content of claudin-4, occludin, and Na+ channel gamma-subunit (gamma-ENaC) mRNAs by 1.34-, 1.32-, and 1.80-fold, respectively, after 1 h and was followed by an increase at 6 h in the content of mRNA of alpha- and beta-ENaC and of alpha1- and beta1-Na,K-ATPase. In the absence of dexamethasone, neither change in gene expression nor cell uplifting was observed. Our data suggest that during epithelial differentiation, coordinated expression of tight junction proteins precedes the development of vectorial transport of sodium, which in turn leads to the fluid accumulation in basolateral spaces that is responsible for dome formation.  相似文献   

3.
Summary Multicellular, cystic structures, termed domes, have been described previously in epithelia cultured from various tissues that have a known transport or secretory function in vivo and in vitro. We report for the first time dome formation in cells cultured from “covering” and “rest” epithelia of oral tissues: porcine gingival and alveolar mucosa epithelium and epithelial rests of Malassez. As demonstrated by light- and electron microscopy, the morphology of the domes varied with the location of their lumen and the number of cells or cell layers involved in their structure. Sequential observations using phase contrast microscopy and time lapse cinematography of living cultures showed that the domes were dynamic structures with expansion-collapse cycles of between 30 min and 17 h duration. Dome formation in oral epithelia was stimulated by dibutyryl cyclic AMP (dbcAMP, 10−3 to 10−6 M) and abolished by ouabain (10−10 M), an inhibitor of sodium transport. The morphological features and the dynamic nature of domes found in oral epithelia, and their dbcAMP and ouabain responsiveness are similar to those demonstrated previously in several other epithelia that have a known transport function in vivo and in vitro. Such fluid transport is not thought to be a property of oral epithelia in vivo. Our data, however, suggest a similar function of these epithelia cultured in vitro, and perhaps in pathological cyst formation in vivo.  相似文献   

4.
Effects of terbutaline on sodium transport in isolated perfused rat lung   总被引:6,自引:0,他引:6  
We have previously presented evidence that cultured alveolar epithelial cell monolayers actively transport sodium from medium to substratum, and that this process can be stimulated by beta-agonists. In this study the isolated perfused rat lung was utilized to investigate sodium transport across intact mammalian alveolar epithelium. Radioisotopic tracer(s) (22Na and/or [14C]sucrose) were instilled into the airways of isolated Ringer-perfused rat lungs. The appearance of isotope(s) in the recirculated perfusate was measured and a permeability-surface area product was calculated. Pharmacological agent(s) (terbutaline and/or propranolol) were present in the instillate or were added to the perfusate during the experiments. Terbutaline alone, whether in the instillate or perfusate, caused a significant increase in 22Na flux. This increase was prevented by the presence of propranolol. [14C]sucrose fluxes were unaffected by the presence of terbutaline. These data are consistent with the presence of an active component of sodium transport across intact mammalian alveolar epithelium that leads to removal of sodium from the alveolar space.  相似文献   

5.
Transforming growth factor-beta1 (TGF-beta 1) may be a critical mediator of lung injury and subsequent remodeling during recovery. We evaluated the effects of TGF-beta 1 on the permeability and active ion transport properties of alveolar epithelial cell monolayers. Rat alveolar type II cells plated on polycarbonate filters in defined serum-free medium form confluent monolayers and acquire the phenotypic characteristics of alveolar type I cells. Exposure to TGF-beta 1 (0.1-100 pM) from day 0 resulted in a concentration- and time-dependent decrease in transepithelial resistance (Rt) and increase in short-circuit current (Isc). Apical amiloride or basolateral ouabain on day 6 inhibited Isc by 80 and 100%, respectively. Concurrent increases in expression of Na+-K+-ATPase alpha 1- and beta 1-subunits were observed in TGF-beta 1-treated monolayers. No change in the alpha-subunit of the rat epithelial sodium channel (alpha-rENaC) was seen. Exposure of confluent monolayers to TGF-beta 1 from day 4 resulted in an initial decrease in Rt within 6 h, followed by an increase in Isc over 72-96 h. These results demonstrate that TGF-beta 1 modulates ion conductance and active transport characteristics of the alveolar epithelium, associated with increased Na+-K+-ATPase, but without a change in alpha-rENaC.  相似文献   

6.
Human epithelial cells of the Ishikawa endometrial line can be stimulated to differentiate and form multicellular structures in 4–5 day-old monolayer cultures by the addition of a protein factor from fetal bovine serum. Multicellular structures become obvious over an 18–30-h period as the cells enlarge, separate from the dish, and form domes. These structures are similar to those that result from polarization in other epithelial cell lines. Ishikawa dome formation appears to be a multistage process. The appearance of enlarged differentiated cells is detected within hours of adding fetal bovine serum; these enlarged cells lift off the surface of the dish within 6–8 more hours. Domes are observed about 24 h after the addition of fetal bovine serum. Sometimes dome cells migrate into a “bud-like” structure that extends out from the dome. Differentiation of the domes is dependent on a factor from fetal calf serum that behaves similarly to a very large protein or complex of proteins, greater than 300 kd. Progesterone appears to enhance the formation of domes but does not elicit dome formation in the absence of serum factor.  相似文献   

7.
Summary Primary cultures of murine renal epithelial cells were established from a preparation of proximal tubule fragments. Confluent cultures exhibited multiple dome formation, indicating the presence of tight junctions and an intact transcellular transport process. Ultrastructural analysis revealed a monolayer of polarized cells, with a sparse but clearly defined microvillar surface facing the growth medium and a basolateral surface attached to the substratum. Cultures grown on collagen gels did not show domes. The epithelial monolayer exhibited several differentiated functions of the proximal tubule: a) parathyroid hormone (PTH)-stimulated cAMP synthesis; b) production of 24,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3; c) high alkaline phosphatase activity; and d) Na+-dependent transport of phosphate (Pi) and α-methylglucoside (α-MG). The sugar uptake was selectively inhibited by phlorizin, a competitive inhibitor of glucose uptake at the luminal membrane. Kinetic analysis revealed independent transport systems for Pi and α-MG, with Km values corresponding to the high affinity systems identified in brush border membrane vesicles derived from the proximal tubule. Pi uptake by the epithelial monolayers was regulated by the concentration of Pi in the growth medium. Phorbol esters and PTH did not exert an effect on Pi and α-MG transport in mouse primary cultures. The present study demonstrates that primary cultures provide a useful in vitro preparation to investigate renal proximal tubular function. Cindy Bell was the recipient of an MRC Studentship Award. This work was supported by the MRC (Group in Medical Genetics). This is publication number 88011 of the McGill University-Montreal Children's Hospital Research Institute.  相似文献   

8.
Addition of dimethyl sulfoxide (DMSO) and the mammotropic hormones prolactin, hydrocortisone, insulin, and estradiol to confluent cultures of the epithelial cell line Rat Mammary (Rama) 25 increases dramatically the formation of domes in the cell monolayer after 48-72 hr. Associated with the increase in doming is an increase of 24% in the activity of the Na+/K+ ATPase. Both Ca2+ (A23187) and Na+ (monensin, gramicidin J, melittin) ionophores can replace DMSO in inducing domes, whilst the K+ ionophore valinomycin inhibits doming. However, there are no synergistic nor additive effects, respectively, with suboptimal or optimal concentrations of A23187 and melittin together. Ouabain, at concentrations which inhibit the Na/K ATPase in vitro, and amiloride, at concentrations reported to inhibit the passive transport of Na+, both inhibit completely the formation of domes induced by DMSO, A23187, and melittin. EGTA, however, inhibits only the induction of doming by DMSO and A23187; it is without effect with melittin. A23187 and melittin induce the major polypeptide changes that occur in doming cultures with DMSO, and most of these changes are also inhibited with ouabain. It is suggested that one possible interpretation of the findings is that the induction of doming by DMSO in Rama 25 cells occurs by means of sequential increases in Ca2+ and Na+ influxes into the cell, and that the increased intracellular concentration of Na+ so produced stimulates the Na+/K+ ATPase, with a net effect of pumping liquid beneath the cellular monolayer.  相似文献   

9.
Dissociated cells of transporting epithelia, when cultured on an impermeant substratum, form polarized monolayers frequently characterized by the presence of domes. If the assumption is made that the monolayer exhibits a uniform stretch modulus of elasticity and tension of cell-dish adhesion, Ta, then biophysical properties of the epithelium can be predicted. We have shown that for such epithelia, domes should (a) have circular bases, (b) be sections of spheres with a constant height to radius, h/r, ratio, (c) have a dome-wall tension, Tw, that is constant, and (d) have a dome volume that is a function of radius alone. Additionally, a Laplace equation derived for this geometry predicted the hydrostatic pressure from within to outside domes as a decreasing function of radius alone. By microscopy, domes had predominantly circular bases and were found to be sections of spheres with a constant height, h, to radius, r, ratio of 0.684. Using the Laplace equation derived for this geometry and measurements of delta P and r, the tension of cell-dish adhesion, Ta, and dome-wall tension, Tw, were found to be constants of 6.60 and 7.08 torr, respectively. Combining the constants for Ta and h/r ratio, and the fact that domes are sections of spheres, delta P and dome volume were shown to be known functions of radius alone. In addition, the modulus of elasticity of the epithelium was calculated to be 4.82 X 10(3) dyn/cm2.  相似文献   

10.
Dome formation is a manifestation of transepithelial fluid transport in cell culture, a differentiated characteristic of transporting epithelia. A dramatic increase in numbers of domes in confluent MDCK kidney epithelial cell cultures was noted after addition of Friend cell inducers such as hexamethylane bisacetamide (HMBA) (Lever, 1979b). In the present study, we show that primary amines such as methylamine, ethylamine, and dansyl cadaverine also stimulate dome formation. These compounds largely prevented the marked decrease in numbers of spontaneously occurring domes which occurred when cultures were switched from medium containing 10% serum to medium containing serum concentrations below 0.2%. Many of these primary amines are not only lysosomotropic agents but also potent inhibitors of transglutaminase activity when assayed in MDCK cell extracts, at concentrations correlating with those effective in stimulation of dome formation. Other lysosomotropic agents such as chloroquine and secondary and tertiary amines stimulated dome formation yet did not inhibit transglutaminase. Induction of domes by HMBA differed in several properties from that stimulated by amines and did not involve fluctuations in transglutaminase activity. These findings suggest that lysosomal functions modulate serum stimulation of dome formation in epithelial cells by a pathway distinct from that triggered by HMBA.  相似文献   

11.
Summary An in vitro serum-free culture system provides an important approach to the understanding of local hormonal regulation of mammary epithelial and fibroblast cells, avoiding the complexity of the in vivo environment and the influence of undefined serum factors. The substratum conditions and medium components have been examined for the basal growth of epithelial cells, fibroblasts, and combined epithelial and fibroblast cells in monolayer cultures. Epithelial cells and mixed cells exhibit good attachment and maintenance on a collagen-coated surface in a minimal medium supplemented with fetuin and insulin. In contrast, fibroblast-enriched cultures require a plastic substratum and a medium supplemented with insulin, fetuin, and hydrocortisone. In mixed cell culture, fibroblasts are maintained well in the minimal media which supports the maintenance of epithelial cells. These results indicate that the presence of epithelial cells in mixed cell cultures can influence fibroblast function. The media developed in the present study can be used in future studies of fibroblast and epithelial cell interactions with regard to hormone and growth factor regulation of their growth and differentiation.  相似文献   

12.
The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a rate-limiting step for sodium (Na+) and water absorption across lung alveolar epithelium. Recent reports suggested that ENaC is regulated by membrane-bound extracellular serine proteases, such as channel-activating proteases (CAPs). The objectives of this study were to examine the role of serine proteases in the regulation of transepithelial alveolar Na+ and water transport in vitro and in vivo and the expression of CAPs in rodent distal lung. In vitro experiments showed that inhibition of endogenous serine proteases by apical aprotinin 1) decreased ENaC-mediated currents in primary cultures of rat and mouse alveolar epithelial cells without affecting the abundance nor the electrophoretic migration pattern of biotinylated alpha- and beta-ENaC expressed at the cell surface and 2) suppressed the increase in amiloride-sensitive short-circuit current induced by the beta2-agonist terbutaline. RT-PCR experiments indicated that CAP1, CAP2, and CAP3 mRNAs were expressed in mouse alveolar epithelial cells, whereas CAP1 was also expressed in alveolar macrophages recovered by bronchoalveolar lavage. CAP1 protein was detected by Western blotting in rat and mouse alveolar epithelial cells, alveolar macrophages and bronchoalveolar lavage fluid. Finally, in vivo experiments revealed that intra-alveolar treatment with aprotinin abolished the increase in Na+-driven alveolar fluid clearance (AFC) induced by terbutaline in an in situ mouse lung model, whereas trypsin potentiated it. These results show that endogenous membrane-bound and/or secreted serine proteases such as CAPs regulate alveolar Na+ and fluid transport in vitro and in vivo in rodent lung.  相似文献   

13.
Domes are multicellular structures generated from confluentmonolayers of mammary epithelium under the influence of insulinand a corticosteroid hormone. The hemicyst structure and occurrencepatterns of domes suggest an in vitro analogy to organized aciniof mammary parenchyma. Two activities of dome cells, vegetativereplication of the mammary tumor virus and synthesis of casein,suggest a functional analogy between domes and acini. The corticosteroidhormone is considered the primary hormonal stimulant for domeformation. Evidence is presented that RNA and protein synthesisis required for the corticosteroid effect, as are intact activetransport functions of epithelial cells.  相似文献   

14.
Summary A certain kind of cell in the pituitary gland exhibited immunoreactive keratin and dome formations in vitro. We obtained epithelial cells, which were able to subculture, from the outgrowth of anterior pituitary organ cultures. These cells lacked hormone secretory granules and exhibited immunoreactive keratin. Furthermore, they produced dome formations or cystic structures in monolayer culture and under three-dimensional culture condition using type I collagen gel. Dome formation was stimulated by dibutyryl cyclic AMP (dbcAMP, 10−3 to 10−5 M). Their responsiveness to dbcAMP is similar to that of several other epithelial cells that possess transport functions in vivo and in vitro. Although the origin of our cultured cells is unknown, these cells formed dome formations that possessed transport function and were related to cystic structures in the pituitary gland in vivo. The study was supported by Grants in Aid for Scientific Research 60570018, 60870002 (for Dr. H. Ishikawa), and by The Science Research Promotion Fund from Japan Private School Promotion Foundation (for Dr. H. Ishikawa).  相似文献   

15.
Summary This communication reports the results of a morphological study of three-day old cultures of epiblast tissue from the early chick embryo. The most striking feature of these cultures was the appearance of domes or elevated blister-like structures, composed of a single layer of cells which were morphologically distinct from the remaining cells in the culture. The domes arose in high-density areas of the culture. Their roofs were lined by basal laminae that did not develop in other areas of the culture. In several morphological respects, the cells of the dome roof closely resembled the epiblast in vivo. This was in contrast to the cells spread on the substratum in sparse regions of the culture, which did not. Each dome was surrounded by a dense ring of multilayered ruffling cells which appeared to give rise to both the dome roof and to fibroblast-like cells that spread on the substratum beneath the dome. Fibroblast-like cells also developed in discrete patches in other regions of the culture. In other tissues, dome formation has been attributed to fluid transport by the epithelium; in the present case it is also possible to invoke the capacity of the epiblast to fold, as contributing to the mechanism of dome formation.  相似文献   

16.
Acute lung injury (ALI) is a devastating syndrome characterized by diffuse alveolar damage, elevated airspace levels of pro-inflammatory cytokines, and flooding of the alveolar spaces with protein-rich edema fluid. Interleukin-1beta (IL-1beta) is one of the most biologically active cytokines in the distal airspaces of patients with ALI. IL-1beta has been shown to increase lung epithelial and endothelial permeability. In this study, we hypothesized that IL-1beta would decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we measured the effects of IL-1beta on transepithelial current, resistance, and sodium transport in primary cultures of alveolar epithelial type II (ATII) cells. IL-1beta significantly reduced the amiloride-sensitive fraction of the transepithelial current and sodium transport across rat ATII cell monolayers. Moreover, IL-1beta decreased basal and dexamethasone-induced epithelial sodium channel alpha-subunit (alpha ENaC) mRNA levels and total and cell-surface protein expression. The inhibitory effect of IL-1beta on alpha ENaC expression was mediated by the activation of p38 MAPK in both rat and human ATII cells and was independent of the activation of alpha v beta6 integrin and transforming growth factor-beta. These results indicate that IL-1beta may contribute to alveolar edema in ALI by reducing distal lung epithelial sodium absorption. This reduction in ion and water transport across the lung epithelium is in large part due to a decrease in alpha ENaC expression through p38 MAPK-dependent inhibition of alpha ENaC promoter activity and to an alteration in ENaC trafficking to the apical membrane of ATII cells.  相似文献   

17.
Alteration of sodium transport by the choroid plexus with amiloride   总被引:3,自引:0,他引:3  
Cerebrospinal fluid (CSF) production results from active transport of Na+ from blood to CSF, which is followed by H2O and anions. Amiloride reduces Na+ movement in epithelial tissues. To ascertain if amiloride alters transport of Na+ in the choroid plexus, the drug was administered either i.p. to male Sprague-Dawley rats that were bilaterally nephrectomized to determine in vivo effects, or added to artificial CSF to incubate the choroid plexus in vitro. Choroid cell [Na+] was reduced after amiloride treatment both in vivo and in vitro. In addition, the rate of 22Na uptake into the CSF and choroid plexus (CP) was decreased after amiloride. Alterations in choroid cell [Na+] and 22Na penetration into CSF and CP occurred at relatively high doses of drug (1 mumol/ml, in vitro and 100 micrograms/g in vivo), but lower doses were less effective (0.1 mumol/ml in vitro and 10 micrograms/g in vivo). It is concluded that the effects of amiloride on Na+ distribution and transport in the CP are due to inhibition of basolateral Na+-H+ exchange.  相似文献   

18.
We determined that rats fed a liquid diet containing ethanol (36% of calories) for 6 wk had decreased (P < 0.05) net vectorial fluid transport and increased (P < 0.05) bidirectional protein permeability across the alveolar epithelium in vivo compared with rats fed a control diet. However, both groups increased (P < 0.05) fluid transport in response to epinephrine (10(-5) M) stimulation, indicating that transcellular sodium transport was intact. In parallel, type II cells isolated from ethanol-fed rats and cultured for 8 days formed a more permeable monolayer as reflected by increased (P < 0.05) leak of [(14)C]inulin. However, type II cells from ethanol-fed rats had more sodium-permeant channels in their apical membranes than type II cells isolated from control-fed rats, consistent with the preserved response to epinephrine in vivo. Finally, the alveolar epithelium of ethanol-fed rats supplemented with L-2-oxothiaxolidine-4-carboxylate (Procysteine), a glutathione precursor, had the same (P < 0.05) net vectorial fluid transport and bidirectional protein permeability in vivo and permeability to [(14)C]inulin in vitro as control-fed rats. We conclude that chronic ethanol ingestion via glutathione deficiency increases alveolar epithelial intercellular permeability and, despite preserved or even enhanced transcellular sodium transport, renders the alveolar epithelium susceptible to acute edematous injury.  相似文献   

19.
We employed ultrasonic nebulization for homogeneous alveolar tracer deposition into ventilated perfused rabbit lungs. (22)Na and (125)I-albumin transit kinetics were monitored on-line with gamma detectors placed around the lung and the perfusate reservoir. [(3)H]mannitol was measured by repetitive counting of perfusion fluid samples. Volume of the alveolar epithelial lining fluid was estimated with bronchoalveolar lavage with sodium-free isosmolar mannitol solutions. Sodium clearance rate was -2.2 +/- 0.3%/min. This rate was significantly reduced by preadministration of ouabain/amiloride and enhanced by pretreatment with aerosolized terbutaline. The (125)I-albumin clearance rate was -0.40 +/- 0.05%/min. The appearance of [(3)H]mannitol in the perfusate was not influenced by ouabain/amiloride or terbutaline but was markedly enhanced by pretreatment with aerosolized protamine. An epithelial lining fluid volume of 1.22 +/- 0.21 ml was calculated in control lungs. Fluid absorption rate was 1.23 microl x g lung weight(-1) x min(-1), which was blunted after pretreatment with ouabain/amiloride. We conclude that alveolar tracer loading by aerosolization is a feasible technique to assess alveolar epithelial barrier properties in aerated lungs. Data on active and passive sodium flux, paracellular solute transit, and net fluid absorption correspond well to those in previous studies in fluid-filled lungs; however, albumin clearance rates were markedly higher in the currently investigated aerated lungs.  相似文献   

20.
Acute lung injury (ALI) is characterized by the flooding of the alveolar airspaces with protein-rich edema fluid and diffuse alveolar damage. We have previously reported that transforming growth factor-beta1 (TGF-beta1) is a critical mediator of ALI after intratracheal administration of bleomycin or Escherichia coli endotoxin, at least in part due to effects on lung endothelial and alveolar epithelial permeability. In the present study, we hypothesized that TGF-beta1 would also decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we studied the effect of active TGF-beta1 on 22Na+ uptake across monolayers of primary rat and human alveolar type II (ATII) cells. TGF-beta1 significantly reduced the amiloride-sensitive fraction of 22Na+ uptake and fluid transport across monolayers of both rat and human ATII cells. TGF-beta1 also significantly decreased alphaENaC mRNA and protein expression and inhibited expression of a luciferase reporter downstream of the alphaENaC promoter in lung epithelial cells. The inhibitory effect of TGF-beta1 on sodium uptake and alphaENaC expression in ATII cells was mediated by activation of the MAPK, ERK1/2. Consistent with the in vitro results, TGF-beta1 inhibited the amiloride-sensitive fraction of the distal airway epithelial fluid transport in an in vivo rat model at a dose that was not associated with any change in epithelial protein permeability. These data indicate that increased TGF-beta1 activity in the distal airspaces during ALI promotes alveolar edema by reducing distal airway epithelial sodium and fluid clearance. This reduction in sodium and fluid transport is attributable in large part to a reduction in apical membrane alphaENaC expression mediated through an ERK1/2-dependent inhibition of the alphaENaC promoter activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号