首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.  相似文献   

2.
The mitochondrial outer membrane mediates numerous interactions between the metabolic and genetic systems of mitochondria and the rest of the eukaryotic cell. We performed a proteomic study to discover novel functions of components of the mitochondrial outer membrane. Proteins of highly pure outer membrane vesicles (OMV) from Neurospora crassa were identified by a combination of LC-MS/MS of tryptic peptide digests and gel electrophoresis of solubilized OMV proteins, followed by their identification using MALDI-MS PMF. Among the 30 proteins found in at least three of four separate analyses were 23 proteins with known functions in the outer membrane. These included components of the import machinery (the TOM and TOB complexes), a pore-forming component (porin), and proteins that control fusion and fission of the organelle. In addition, proteins playing a role in various biosynthetic pathways, whose intracellular location had not been established previously, could be localized to the mitochondrial outer membrane. Thus, the proteome of the outer membrane can help in identifying new mitochondria-related functions.  相似文献   

3.
Signal-anchored proteins are a class of mitochondrial outer membrane proteins that expose a hydrophilic domain to the cytosol and are anchored to the membrane by a single transmembrane domain in the N-terminal region. Like the vast majority of mitochondrial proteins, signal-anchored proteins are synthesized on cytosolic ribosomes and are subsequently imported into the organelle. We have studied the mechanisms by which precursors of these proteins are recognized by the mitochondria and are inserted into the outer membrane. The import of signal-anchored proteins was found to be independent of the known import receptors, Tom20 and Tom70, but to require the major Tom component, Tom40. In contrast to precursors destined to internal compartments of mitochondria and those of outer membrane beta-barrel proteins, precursors of signal-anchored proteins appear not to be inserted via the general import pore. Taken together, we propose a novel pathway for insertion of these proteins into the outer membrane of mitochondria.  相似文献   

4.
One major problem concerning the electrophoresis of mitochondria is the heterogeneity of mitochondrial appearance especially under pathological conditions. We show here the use of zone electrophoresis in a free flow electrophoresis device (ZE-FFE) as an analytical sensor to discriminate between different yeast mitochondrial populations. Impairment of the structural properties of the organelles by hyperosmotic stress resulted in broad separation profiles. Conversely untreated mitochondria gave rise to homogeneous populations reflected by sharp separation profiles. Yeast mitochondria with altered respiratory activity accompanied by a different outer membrane proteome composition could be discriminated based on electrophoretic deflection. Proteolysis of the mitochondrial surface proteome and the deletion of a single major protein species of the mitochondrial outer membrane altered the ZE-FFE deflection of these organelles. To demonstrate the usefulness of ZE-FFE for the analysis of mitochondria associated with pathological processes, we analyzed mitochondrial fractions from an apoptotic yeast strain. The cdc48(S565G) strain carries a mutation in the CDC48 gene that is an essential participant in the endoplasmic reticulum-associated protein degradation pathway. Mutant cells accumulate polyubiquitinated proteins in microsomal and mitochondrial extracts. Subsequent ZE-FFE characterization could distinguish a mitochondrial subfraction specifically enriched with polyubiquitinated proteins from the majority of non-affected mitochondria. This result demonstrates that ZE-FFE may give important information on the specific properties of subpopulations of a mitochondrial preparation allowing a further detailed functional analysis.  相似文献   

5.
The gene for Hsp30, the only known alpha-crystallin-related heat shock protein of Neurospora crassa, was disrupted by repeat-induced point mutagenesis, leading to loss of cell survival at high temperature. Hsp30, which is not synthesized at 30 degrees C, associates reversibly with the mitochondria at high temperature (45 degrees C). In this study, we found that import of selected proteins into internal compartments of mitochondria, following their synthesis in the cytosol, was severely impaired at high temperature in a strain mutant in Hsp30. After 70 min of cell incubation at 45 degrees C, most matrix, inner membrane, and intermembrane-space proteins tested were reduced in import by about 50-70% in the mutant, as compared to wild-type cells. In contrast, assembly of selected proteins into the outer mitochondrial membrane was not reduced, except for one component of the preprotein translocase complex of the mitochondrial outer membrane. Three proteins of this complex co-immunoprecipitated with Hsp30 of wild-type cells incubated at 45 degrees C. We propose that Hsp30 interacts with the preprotein translocase of the mitochondrial outer membrane and that it chaperones the activity of one or more components of this translocase complex at high temperature.  相似文献   

6.
Proteomic analyses of different subcellular compartments, so-called organellar proteomics, facilitate the understanding of cellular functions on a molecular level. In this work, various orthogonal multidimensional separation techniques both on the protein and on the peptide level are compared with regard to the number of identified proteins as well as the classes of proteins accessible by the respective methodology. The most complete overview was achieved by a combination of such orthogonal techniques as shown by the analysis of the yeast mitochondrial proteome. A total of 851 different proteins (PROMITO dataset) were identified by use of multidimensional LC-MS/MS, 1D-SDS-PAGE combined with nano-LC-MS/MS and 2D-PAGE with subsequent MALDI-mass fingerprinting. Our PROMITO approach identified the 749 proteins, which were found in the largest previous study on the yeast mitochondrial proteome, and additionally 102 proteins including 42 open reading frames with unknown function, providing the basis for a more detailed elucidation of mitochondrial processes. Comparison of the different approaches emphasizes a bias of 2D-PAGE against proteins with very high isoelectric points as well as large and hydrophobic proteins, which can be accessed more appropriately by the other methods. While 2D-PAGE has advantages in the possible separation of protein isoforms and quantitative differential profiling, 1D-SDS-PAGE with nano-LC-MS/MS and multidimensional LC-MS/MS are better suited for efficient protein identification as they are less biased against distinct classes of proteins. Thus, comprehensive proteome analyses can only be realized by a combination of such orthogonal approaches, leading to the largest dataset available for the mitochondrial proteome of yeast.  相似文献   

7.
Most mitochondrial proteins are synthesized in the cytosol and imported into one of the four mitochondrial compartments: outer membrane, intermembrane space, inner membrane, and matrix. Each compartment contains protein complexes that interact with precursor proteins and promote their transport. These translocase complexes do not act as independent units but cooperate with each other and further membrane complexes in a dynamic manner. We propose that a regulated coupling of translocases is important for the coordination of preprotein translocation and efficient sorting to intramitochondrial compartments.  相似文献   

8.
Cdc48p/p97 is a cytosolic essential AAA chaperone, which regulates multiple cellular reactions in a ubiquitin-dependent manner. We have recently shown that Cdc48p exhibits positively cooperative ATPase activity and loss of the positive cooperativity results in yeast cell death. Here we show that loss of the positive cooperativity of the yeast Cdc48p ATPase activity led to severe mitochondrial aggregation. The actin cytoskeleton and distribution of the ER-mitochondria tethering complex (ERMES) were eliminated from the cause of the mitochondrial aggregation. Instead, a mitochondrial outer membrane protein Fzo1p, which is required for mitochondrial fusion, and components of ERMES, which is involved in mitochondrial morphology, were remarkably stabilized in the Cdc48p mutants. In the last couple of years, it was shown that Vms1p functions as a cofactor of Cdc48p for the function of protein degradation of mitochondrial outer membrane proteins. Nevertheless, we found that Vms1p was not involved in the Cdc48p-dependent mitochondrial aggregation and loss of Vms1p did not significantly affect degradation rates of proteins anchored to the mitochondrial outer membrane. These results suggest that Cdc48p controls mitochondrial morphology by regulating turnover of proteins involved in mitochondrial morphology in a Vms1p-independent manner.  相似文献   

9.
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.  相似文献   

10.
Mitochondria are responsible for many vital cellular functions in eukaryotic cells, such as ATP production, steroid synthesis and prosthetic group biogenesis. The vital functions of mitochondria are possible due to the compartmental nature of this organelle. Mitochondria form a dynamic network that can exist as a network throughout a cell or as distinct individual structures. Mitochondria are also composed of two membranes, an inner and outer membrane. The inner mitochondrial membrane (IMM) is significantly larger than the outer membrane and must fold upon itself to be contained within the outer mitochondrial membrane (OMM). These folds are known as cristae. Altogether these different membrane compartments specialize in different functions of the mitochondria. The OMM is responsible for passage of small metabolites into and out of the mitochondria while excluding macromolecules. The IMM is a highly selective barrier between the solutes of the cytosol and those within the mitochondrial matrix. Cristae specialize in oxidative phosphorylation. The functions of these membranes are afforded by membrane proteins that are able to transport specific solutes. The appropriate localization, assembly into multi-subunit protein complexes, and wild-type function of these membrane proteins therefore is vital for mitochondria to maintain appropriate function and support cellular survival. This review will address the composition and functions of mitochondrial membrane localized multi-subunit protein complexes along with how these proteins undergo degradation to maintain homeostatic functions of mitochondria in the context of mitochondria specific transporters and ion channels. Due to the large number of known mitochondrial membrane transporters and ion channels this review will focus on the topics presented at the Mitochondrial Ion Channels and Transporters Symposium hosted by the New York University College of Dentistry in September 2015 in honor of Casey Kinnally.  相似文献   

11.
The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction.  相似文献   

12.
The mitochondrial outer membrane (MOM) harbors several multispan proteins that execute various functions. Despite their importance, the mechanisms by which these proteins are recognized and inserted into the outer membrane remain largely unclear. In this paper, we address this issue using yeast mitochondria and the multispan protein Ugo1. Using a specific insertion assay and analysis by native gel electrophoresis, we show that the import receptor Tom70, but not its partner Tom20, is involved in the initial recognition of the Ugo1 precursor. Surprisingly, the import pore formed by the translocase of the outer membrane complex appears not to be required for the insertion process. Conversely, the multifunctional outer membrane protein mitochondrial import 1 (Mim1) plays a central role in mediating the insertion of Ugo1. Collectively, these results suggest that Ugo1 is inserted into the MOM by a novel pathway in which Tom70 and Mim1 contribute to the efficiency and selectivity of the process.  相似文献   

13.
This study is part of a large-scale investigation of the proteome of mitochondria from the heart muscle of Bos taurus. We developed a special approach to simplification of the protein mixture by separation of mitochondrial fractions with stable protein compositions. At the first stage of this approach, we isolated and purified internal mitochondrial membranes. The protein composition of this fraction was analyzed by the following proteomic methods: enzymatic or/and chemical cleavage of the proteins, chromatographic fractionation of the complex mixture of the resulting peptides, mass-spectrometric identification of these peptides, and a search for proteins in databases of amino acid sequences. We reliably identified 147 unique proteins with the use of the SwissProt database. The subcellular location and functions of these proteins were analyzed. Approaches to studies of transmembrane domains of integral membrane proteins of the internal mitochondrial membrane were proposed on the basis of proteomic methods of analysis. Considerable coincidence of the experimental data with the results of determination of the 3D structures of the proteins by X-ray analysis was shown.  相似文献   

14.
《The Journal of cell biology》1988,107(6):2483-2490
The precursor of porin, a mitochondrial outer membrane protein, competes for the import of precursors destined for the three other mitochondrial compartments, including the Fe/S protein of the bc1- complex (intermembrane space), the ADP/ATP carrier (inner membrane), subunit 9 of the F0-ATPase (inner membrane), and subunit beta of the F1- ATPase (matrix). Competition occurs at the level of a common site at which precursors are inserted into the outer membrane. Protease- sensitive binding sites, which act before the common insertion site, appear to be responsible for the specificity and selectivity of mitochondrial protein uptake. We suggest that distinct receptor proteins on the mitochondrial surface specifically recognize precursor proteins and transfer them to a general insertion protein component (GIP) in the outer membrane. Beyond GIP, the import pathways diverge, either to the outer membrane or to translocation contact-sites, and then subsequently to the other mitochondrial compartments.  相似文献   

15.
The mitochondrial outer membrane contains two translocase machineries for precursor proteins—the translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The TOM complex functions as the main mitochondrial entry gate for nuclear-encoded proteins, whereas the SAM complex was identified according to its function in the biogenesis of β-barrel proteins of the outer membrane. The SAM complex is required for the assembly of precursors of the TOM complex, including not only the β-barrel protein Tom40 but also a subset of α-helical subunits. While the interaction of β-barrel proteins with the SAM complex has been studied in detail, little is known about the interaction between the SAM complex and α-helical precursor proteins. We report that the SAM is not static but that the SAM core complex can associate with different partner proteins to form two large SAM complexes with different functions in the biogenesis of α-helical Tom proteins. We found that a subcomplex of TOM, Tom5-Tom40, associates with the SAM core complex to form a new large SAM complex. This SAM-Tom5/Tom40 complex binds the α-helical precursor of Tom6 after the precursor has been inserted into the outer membrane in an Mim1 (mitochondrial import protein 1)-dependent manner. The second large SAM complex, SAM-Mdm10 (mitochondrial distribution and morphology protein), binds the α-helical precursor of Tom22 and promotes its membrane integration. We suggest that the modular composition of the SAM complex provides a flexible platform to integrate the sorting pathways of different precursor proteins and to promote their assembly into oligomeric complexes.  相似文献   

16.
17.
M Dihanich  K Suda    G Schatz 《The EMBO journal》1987,6(3):723-728
A yeast mutant lacking the only known pore-forming protein of the mitochondrial outer membrane was constructed by gene disruption. The mutant retained all other major proteins of the mitochondrial outer membrane, but was severely deficient in mitochondrial cytochromes and initially did not grow on the non-fermentable carbon source, glycerol. However, it could slowly adapt to glycerol; adaptation was accompanied by the partial restoration of cytochrome levels and massive accumulation of an 86-kd polypeptide in extramitochondrial cell fractions.  相似文献   

18.
Two different functions have been proposed for the phosphate carrier protein/p32 of Saccharomyces cerevisiae mitochondria: transport of phosphate and requirement for import of precursor proteins into mitochondria. We characterized a yeast mutant lacking the gene for the phosphate carrier/p32 and found both a block in the import of phosphate and a strong reduction in the import of preproteins transported to the mitochondrial inner membrane and matrix. Binding of preproteins to the surface of mutant mitochondria and import of outer membrane proteins were not inhibited, indicating that the inhibition of protein import occurred after the recognition step at the outer membrane. The membrane potential across the inner membrane of the mutant mitochondria was strongly reduced. Restoration of the membrane potential restored preprotein import but did not affect the block of phosphate transport of the mutant mitochondria. We conclude that the inhibition of protein import into mitochondria lacking the phosphate carrier/p32 is indirectly caused by a reduction of the mitochondrial membrane potential (delta(gamma)), and we propose a model that the reduction of delta(psi) is due to the defective phosphate import, suggesting that phosphate transport is the primary function of the phosphate carrier/p32.  相似文献   

19.
20.
Ben-Menachem R  Tal M  Shadur T  Pines O 《Proteomics》2011,11(23):4468-4476
There are a growing number of examples of identical or almost identical proteins, which are localized to two (or more) separate compartments, a phenomenon that is termed protein dual localization, dual distribution or dual targeting. We previously divided a reference set of known yeast mitochondrial proteins into two groups, suggested to be dual localized or exclusive mitochondrial proteins. Here we examined this evaluation by screening 320 mitochondrial gene products for dual targeting, using the α-complementation assay. The analysis of the results of this experimentally independent screen supports our previous evaluation that dual localized mitochondrial proteins constitute a subgroup of mitochondrial proteins with distinctive properties. These proteins are characterized by a lower probability of mitochondrial localization (MitoProtII score), a lower net charge and are enriched for proteins with a weaker mitochondrial targeting sequence. Conversely, mRNAs of exclusive mitochondrial proteins are enriched in polysomes associated with mitochondria. Based on the discovery of more than 60 new gene products that are now assumed to be dual targeted, we have updated an annotation list of dual-targeted proteins. We currently estimate that more than a third of the mitochondrial proteome is dual targeted, and suggest that this abundant dual targeting presents an evolutionary advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号