首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro. (J Histochem Cytochem 58:941–955, 2010)  相似文献   

2.
Satellite cells reside beneath the basal lamina of skeletal muscle fibers and include cells that act as precursors for muscle growth and repair. Although they share a common anatomical localization and typically are considered a homogeneous population, satellite cells actually exhibit substantial heterogeneity. We used cell-surface marker expression to purify from the satellite cell pool a distinct population of skeletal muscle precursors (SMPs) that function as muscle stem cells. When engrafted into muscle of dystrophin-deficient mdx mice, purified SMPs contributed to up to 94% of myofibers, restoring dystrophin expression and significantly improving muscle histology and contractile function. Transplanted SMPs also entered the satellite cell compartment, renewing the endogenous stem cell pool and participating in subsequent rounds of injury repair. Together, these studies indicate the presence in adult skeletal muscle of prospectively isolatable muscle-forming stem cells and directly demonstrate the efficacy of myogenic stem cell transplant for treating muscle degenerative disease.  相似文献   

3.
4.
5.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors.However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.  相似文献   

6.
The skeletal muscle satellite cell: stem cell or son of stem cell?   总被引:18,自引:0,他引:18  
The concept of the adult tissue stem cell is fundamental to models of persistent renewal in functionally post-mitotic tissues. Although relatively ignored by stem cell biology, skeletal muscle is a prime example of an adult tissue that can generate terminally differentiated cells uniquely specialized to carry out tissue-specific functions. This capacity is attributed to satellite cells, a population of undifferentiated, quiescent precursors that become activated to divide and differentiate in response to the demands of growth or damage. The aim of this review is to discuss the role of the satellite cell as an adult tissue-specific stem cell. We examine evidence for the presence of behaviourally and phenotypically distinct subpopulations of precursor within the satellite cell pool. Further, we speculate on the possible identity, origins and relevance of multipotent muscle stem cells, a population with both myogenic and hematopoietic potentials that has been isolated from whole muscle. Taken together, current evidence suggests the possibility that the regenerative compartment of adult skeletal muscle may conform to an archetypal stem cell-based hierarchy, maintained within a stem cell niche. It therefore remains to be seen whether all satellite cells are skeletal muscle-specific stem cells, or whether some or all are the progeny of an as yet unidentified muscle stem cell.  相似文献   

7.
Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. When satellite cells are activated by myotrauma, they proliferate, migrate, differentiate, and ultimately fuse to existing myofibers. The remainder of these cells do not differentiate, but instead return to quiescence and remain in a quiescent state until activation begins the process again. This ability to maintain their own population is important for skeletal muscle to maintain the capability to repair during postnatal life. However, the mechanisms by which satellite cells return to quiescence and maintain the quiescent state are still unclear. Here, we demonstrated that decorin mRNA expression was high in cell cultures containing a higher ratio of quiescent satellite cells when satellite cells were stimulated with various concentrations of hepatocyte growth factor. This result suggests that quiescent satellite cells express decorin at a high level compared to activated satellite cells. Furthermore, we examined the expression of decorin in reserve cells, which were undifferentiated myoblasts remaining after induction of differentiation by serum-deprivation. Decorin mRNA levels in reserve cells were higher than those in differentiated myotubes and growing myoblasts. These results suggest that decorin participates in the quiescence of myogenic cells.  相似文献   

8.
9.
Muscle satellite cells have long been considered a distinct myogenic lineage responsible for postnatal growth, repair, and maintenance of skeletal muscle. Recent studies in mice, however, have revealed the potential for highly purified hematopoietic stem cells from bone marrow to participate in muscle regeneration. Perhaps more significantly, a population of putative stem cells isolated directly from skeletal muscle efficiently reconstitutes the hematopoietic compartment and participates in muscle regeneration following intravenous injection in mice. The plasticity of muscle stem cells has raised important questions regarding the relationship between the muscle-derived stem cells and the skeletal muscle satellite cells. Furthermore, the ability of hematopoietic cells to undergo myogenesis has prompted new investigations into the embryonic origin of satellite cells. Recent developmental studies suggest that a population of satellite cells is derived from progenitors in the embryonic vasculature. Taken together, these studies provide the first evidence that pluripotential stem cells are present within adult skeletal muscle. Tissue-specific stem cells, including satellite cells, may share a common embryonic origin and possess the capacity to activate diverse genetic programs in response to environmental stimuli. Manipulation of such tissue-specific stem cells may eventually revolutionize therapies for degenerative diseases, including muscular dystrophy.  相似文献   

10.
Regeneration of skeletal muscle relies on a population of quiescent stem cells (satellite cells) and is impaired in very old (geriatric) individuals undergoing sarcopenia. Stem cell function is essential for organismal homeostasis, providing a renewable source of cells to repair damaged tissues. In adult organisms, age-dependent loss-of-function of tissue-specific stem cells is causally related with a decline in regenerative potential. Although environmental manipulations have shown good promise in the reversal of these conditions, recently we demonstrated that muscle stem cell aging is, in fact, a progressive process that results in persistent and irreversible changes in stem cell intrinsic properties. Global gene expression analyses uncovered an induction of p16INK4a in satellite cells of physiologically aged geriatric and progeric mice that inhibits satellite cell-dependent muscle regeneration. Aged satellite cells lose the repression of the INK4a locus, which switches stem cell reversible quiescence into a pre-senescent state; upon regenerative or proliferative pressure, these cells undergo accelerated senescence (geroconversion), through Rb-mediated repression of E2F target genes. p16INK4a silencing rejuvenated satellite cells, restoring regeneration in geriatric and progeric muscles. Thus, p16INK4a/Rb-driven stem cell senescence is causally implicated in the intrinsic defective regeneration of sarcopenic muscle. Here we discuss on how cellular senescence may be a common mechanism of stem cell aging at the organism level and show that induction of p16INK4a in young muscle stem cells through deletion of the Polycomb complex protein Bmi1 recapitulates the geriatric phenotype.  相似文献   

11.
Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.  相似文献   

12.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.Key words: matrix metalloproteinases, skeletal muscle satellite cells, migration, differentiation, regeneration, fibrosis  相似文献   

13.
The role of stem cells in skeletal and cardiac muscle repair.   总被引:15,自引:0,他引:15  
In postnatal muscle, skeletal muscle precursors (myoblasts) can be derived from satellite cells (reserve cells located on the surface of mature myofibers) or from cells lying beyond the myofiber, e.g., interstitial connective tissue or bone marrow. Both of these classes of cells may have stem cell properties. In addition, the heretical idea that post-mitotic myonuclei lying within mature myofibers might be able to re-form myoblasts or stem cells is examined and related to recent observations for similar post-mitotic cardiomyocytes. In adult hearts (which previously were not considered capable of repair), the role of replicating endogenous cardiomyocytes and the recruitment of other (stem) cells into cardiomyocytes for new cardiac muscle formation has recently attracted much attention. The relative contribution of these various sources of precursor cells in postnatal muscles and the factors that may enhance stem cell participation in the formation of new skeletal and cardiac muscle in vivo are the focus of this review. We concluded that, although many endogenous cell types can be converted to skeletal muscle, the contribution of non-myogenic cells to the formation of new postnatal skeletal muscle in vivo appears to be negligible. Whether the recruitment of such cells to the myogenic lineage can be significantly enhanced by specific inducers and the appropriate microenvironment is a current topic of intense interest. However, dermal fibroblasts appear promising as a realistic alternative source of exogenous myoblasts for transplantation purposes. For heart muscle, experiments showing the participation of bone marrow-derived stem cells and endothelial cells in the repair of damaged cardiac muscle are encouraging.  相似文献   

14.
15.
In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.  相似文献   

16.
Satellite cells are well known as a postnatal skeletal muscle stem cell reservoir that under injury conditions participate in repair. However, mechanisms controlling satellite cell quiescence and activation are the topic of ongoing inquiry by many laboratories. In this study, we investigated whether loss of the cell cycle regulatory factor, pRb, is associated with the re-entry of quiescent satellite cells into replication and subsequent stem cell expansion. By ablation of Rb1 using a Pax7CreER,Rb1 conditional mouse line, satellite cell number was increased 5-fold over 6 months. Furthermore, myoblasts originating from satellite cells lacking Rb1 were also increased 3-fold over 6 months, while terminal differentiation was greatly diminished. Similarly, Pax7CreER,Rb1 mice exhibited muscle fiber hypotrophy in vivo under steady state conditions as well as a delay of muscle regeneration following cardiotoxin-mediated injury. These results suggest that cell cycle re-entry of quiescent satellite cells is accelerated by lack of Rb1, resulting in the expansion of both satellite cells and their progeny in adolescent muscle. Conversely, that sustained Rb1 loss in the satellite cell lineage causes a deficit of muscle fiber formation. However, we also show that pharmacological inhibition of protein phosphatase 1 activity, which will result in pRb inactivation accelerates satellite cell activation and/or expansion in a transient manner. Together, our results raise the possibility that reversible pRb inactivation in satellite cells and inhibition of protein phosphorylation may provide a new therapeutic tool for muscle atrophy by short term expansion of the muscle stem cells and myoblast pool.  相似文献   

17.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling, and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.  相似文献   

18.
Skeletal muscle satellite cells, which are found between the muscle fiber and the basal lamina, remain quiescent and undifferentiated unless stimulated to remodel skeletal muscle or repair injured skeletal muscle tissue. Quiescent satellite cells express c-met and fibroblast growth factor receptors (FGFR) 1 and 4, suggesting these receptors are involved in maintaining the undifferentiated quiescent state or involved in satellite cell activation. Although the signaling pathways involved are poorly understood, the mitogen activated protein kinase (MAPK) cascade has been implicated in the regulation of skeletal muscle growth and differentiation by FGFs. In this study, we investigated if activation of the Raf-MKK1/2-ERK1/2 signaling cascade plays a role in FGF-dependent repression of differentiation and proliferation of MM14 cells, a skeletal muscle satellite cell line. Inactivation ofthe Raf-MKK1/2-ERK1/2 pathway in myoblasts through the overexpression of dominant negative mutants of Raf-1 blocks ERK1/2 activity and prevents myoblast proliferation. Additionally, inhibition of MKK1/2 by treatment with pharmacological inhibitors also blocks FGF-mediated stimulation of ERK1/2 and blocks the G1 to S phase transition of myoblasts. Unexpectedly, we found that inactivation of the Raf-ERK pathway does not activate a muscle reporter, nor does inactivation of this pathway promote myogenic differentiation. We conclude that FGF-stimulated ERK1/2 signaling is required during the G1 phase of the cell cycle for commitment of myoblasts to DNA synthesis but is not required for mitosis once cells have entered the S-phase. Moreover, ERK1/2 signaling is not required either to repress differentiation, to promote skeletal muscle gene expression, or to promote myoblast fusion.  相似文献   

19.
20.
Regeneration of skeletal muscle relies on its resident stem cells, also known as satellite cells, which are normally quiescent. With aging, satellite cell quiescence is lost concomitant with a muscle regenerative decline. Here we demonstrate that autophagy sustains quiescence over time and that its failure with age drives senescence, which accounts for stem cell loss of function. Pharmacological and genetic reestablishment of autophagy restores homeostasis and regenerative functions in geriatric satellite cells, which has relevance for the elderly population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号