首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vanillin dehydrogenase gene (ligV), which conferred the ability to transform vanillin into vanillate on Escherichia coli, was isolated from Sphingomonas paucimobilis SYK-6. The ligV gene consists of a 1,440-bp open reading frame encoding a polypeptide with a molecular mass of 50,301 Da. The deduced amino acid sequence of ligV showed about 50% identity with the known vanillin dehydrogenases of Pseudomonas vanillin degraders. The gene product of ligV (LigV) produced in E. coli preferred NAD+ to NADP+ and exhibited a broad substrate preference, including vanillin, benzaldehyde, protocatechualdehyde, m-anisaldehyde, and p-hydroxybenzaldehyde, but the activity toward syringaldehyde was less than 5% of that toward vanillin. Insertional inactivation of ligV in SYK-6 indicated that ligV is essential for normal growth on vanillin. On the other hand, growth on syringaldehyde was only slightly affected by ligV disruption, indicating the presence of a syringaldehyde dehydrogenase gene or genes in SYK-6.  相似文献   

2.
Sphingomonas paucimobilis SYK-6 degrades ferulic acid to vanillin, and it is further metabolized through the protocatechuate 4,5-cleavage pathway. We obtained a Tn5 mutant of SYK-6, FA2, which was able to grow on vanillic acid but not on ferulic acid. A cosmid which complemented the growth deficiency of FA2 on ferulic acid was isolated. The 5.2-kb BamHI-EcoRI fragment in this cosmid conferred the transformation activity of ferulic acid to vanillin on Escherichia coli host cells. A sequencing analysis revealed the genes ferB and ferA in this fragment; these genes consist of 852- and 2,127-bp open reading frames, respectively. The deduced amino acid sequence of ferB showed 40 to 48% identity with that of the feruloyl-coenzyme A (CoA) hydratase/lyase genes of Pseudomonas and Amycolatopsis ferulic acid degraders. On the other hand, the deduced amino acid sequence of ferA showed no significant similarity to the feruloyl-CoA synthetase genes of other ferulic acid degraders. However, the deduced amino acid sequence of ferA did show 31% identity with pimeloyl-CoA synthetase of Pseudomonas mendocina 35, which has been classified as a new superfamily of acyl-CoA synthetase (ADP forming) with succinyl-CoA synthetase (L. B. Sánchez, M. Y. Galperin, and M. Müller, J. Biol. Chem. 275:5794-5803, 2000). On the basis of the enzyme activity of E. coli carrying each of these genes, ferA and ferB were shown to encode a feruloyl-CoA synthetase and feruloyl-CoA hydratase/lyase, respectively. p-coumaric acid, caffeic acid, and sinapinic acid were converted to their corresponding benzaldehyde derivatives by the cell extract containing FerA and FerB, thereby indicating their broad substrate specificities. We found a ferB homolog, ferB2, upstream of a 5-carboxyvanillic acid decarboxylase gene (ligW) involved in the degradation of 5,5'-dehydrodivanillic acid. The deduced amino acid sequence of ferB2 showed 49% identity with ferB, and its gene product showed feruloyl-CoA hydratase/lyase activity with a substrate specificity similar to that of FerB. Insertional inactivation of each fer gene in S. paucimobilis SYK-6 suggested that the ferA gene is essential and that ferB and ferB2 genes are involved in ferulic acid degradation.  相似文献   

3.
Sphingomonas paucimobilis SYK-6 degrades syringate to 3-O-methylgallate (3MGA), which is finally converted to pyruvate and oxaloacetate via multiple pathways in which protocatechuate 4,5-dioxygenase, 3MGA dioxygenase, and gallate dioxygenase are involved. Here we isolated the syringate O-demethylase gene (desA), which complemented the growth deficiency on syringate of a Tn5 mutant of the SYK-6 derivative strain. The desA gene is located 929 bp downstream of ferA, encoding feruloyl-coenzyme A synthetase, and consists of a 1,386-bp open reading frame encoding a polypeptide with a molecular mass of 50,721 Da. The deduced amino acid sequence of desA showed 26% identity in a 325-amino-acid overlap with that of gcvT of Escherichia coli, which encodes the tetrahydrofolate (H(4)folate)-dependent aminomethyltransferase involved in glycine cleavage. The cell extract of E. coli carrying desA converted syringate to 3MGA only when H(4)folate was added to the reaction mixture. DesA catalyzes the transfer of the methyl moiety of syringate to H(4)folate, forming 5-methyl-H(4)folate. Vanillate and 3MGA were also used as substrates for DesA; however, the relative activities toward them were 3 and 0.4% of that toward syringate, respectively. Disruption of desA in SYK-6 resulted in a growth defect on syringate but did not affect growth on vanillate, indicating that desA is essential to syringate degradation. In a previous study the ligH gene, which complements the growth deficiency on vanillate and syringate of a chemical-induced mutant of SYK-6, DC-49, was isolated (S. Nishikawa, T. Sonoki, T. Kasahara, T. Obi, S. Kubota, S. Kawai, N. Morohoshi, and Y. Katayama, Appl. Environ. Microbiol. 64:836-842, 1998). Disruption of ligH resulted in the same phenotype as DC-49; its cell extract, however, was found to be able to convert vanillate and syringate in the presence of H(4)folate. The possible role of ligH is discussed.  相似文献   

4.
5.
The glutathione S-transferases, LigF and LigE, of Sphingobium sp. strain SYK-6 respectively play a role in cleavage of the β-aryl ether of (+)-(βS)-α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV) and (-)-(βR)-MPHPV. The ligP gene, which showed 59% similarity to ligE at the amino acid level, was isolated from SYK-6. LigP produced in Escherichia coli revealed enantioselectivity for (-)-(βR)-MPHPV, and ligE and ligP alone contributed to the degradation of (-)-(βR)-MPHPV in SYK-6.  相似文献   

6.
Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.  相似文献   

7.
The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.  相似文献   

8.
Sphingobium sp. strain SYK-6 is capable of degrading various lignin-derived biaryls. We determined the catabolic pathway of a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA) in SYK-6, and identified some of the DCA catabolism genes. In SYK-6 cells, the alcohol group of DCA was oxidized to the carboxyl group, first at the B-ring side chain and then at the A-ring side chain. The resultant metabolite was degraded to 5-formylferulate and vanillin through the decarboxylation and the Cα–Cβ cleavage of the A-ring side chain. Based on the DCA catabolic pathway, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes are thought to be involved in the conversion of DCA into an aldehyde intermediate (DCA-L) and the conversion of DCA-L into a carboxylic acid intermediate (DCA-C), respectively. SLG_05620 and SLG_24930, which belong to quinohemoprotein ADH and aryl ADH, respectively, were isolated as the genes responsible for the oxidation of DCA. In addition to these genes, multiple genes similar to SLG_05620 and SLG_24930 were found to confer DCA oxidation activities on Escherichia coli cells. In order to identify the DCA-L dehydrogenase genes, the DCA-L oxidation activities of the SYK-6 gene products of putative twenty-one ALDH genes were examined. Significant activities were observed in the four ALDH gene products, including the SLG_27910 product, which showed the highest activity. The disruption of SLG_27910 caused a decreased conversion of DCA-L, suggesting that SLG_27910 plays an important role in the DCA-L oxidation. In conclusion, no specific gene seems to be solely responsible for the conversion of DCA and DCA-L, however, the multiple genes encoding quinohemoprotein ADH and aryl ADH genes, and four ALDH genes are probably involved in the conversion processes.  相似文献   

9.
10.
Protocatechuate (PCA) is the key intermediate metabolite in the lignin degradation pathway of Sphingomonas paucimobilis SYK-6 and is metabolized to pyruvate and oxaloacetate via the PCA 4,5-cleavage pathway. We characterized the 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase gene (ligC). CHMS is the 4,5-cleavage product of PCA and is converted into 2-pyrone-4,6-dicarboxylate (PDC) by LigC. We found that ligC was located 295 bp downstream of ligB, which encodes the large subunit of the PCA 4,5-dioxygenase. The ligC gene consists of a 945-bp open reading frame encoding a polypeptide with a molecular mass of 34,590 Da. The deduced amino acid sequence of ligC showed 19 to 20% identity with 3-chlorobenzoate cis-dihydrodiol dehydrogenase of Alcaligenes sp. strain BR60 and phthalate cis-dihydrodiol dehydrogenases of Pseudomonas putida NMH102-2 and Burkholderia cepacia DBO1, which are unrelated to group I, II, and III microbial alcohol dehydrogenases (M. F. Reid and C. A. Fewson, Crit. Rev. Microbiol. 20:13-56, 1994). The ligC gene was expressed in Escherichia coli and LigC was purified to near homogeneity. Production of PDC from CHMS catalyzed by LigC was confirmed in the presence of NADP(+) by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. LigC is a homodimer. The isoelectric point, optimum pH, and optimum temperature were estimated to be 5.3, 8.0, and 25 degrees C, respectively. The K(m) for NADP(+) was estimated to be 24.6 +/- 1.5 microM, which was approximately 10 times lower than that for NAD(+) (252 +/- 3.9 microM). The K(m)s for CHMS in the presence of NADP(+) and NAD(+) are 26.0 +/- 0.5 and 20.6 +/- 1.0 microM, respectively. Disruption of ligC in S. paucimobilis SYK-6 prevented growth with vanillate. Only PCA was accumulated during the incubation of vanillate with the whole cells of the ligC insertion mutant (DLC), indicating a lack of PCA 4,5-dioxygenase activity in DLC. However, the introduction of ligC into DLC restored its ability to grow on vanillate. PDC was suggested to be an inducer for ligAB gene expression.  相似文献   

11.
A new intracellular bacterial dehydrogenase has been purified. It was active in the reversible reduction by NADH of conjugated carbonyl groups in partially degraded lignin. It was also active on various aromatic aldehydes such as vanillin, syringaldehyde and cinnamaldehyde, but had no effect on acetovanillone and lignin models carrying a conjugated ketone. It is proposed that this enzyme functions as a broadly specific lignin dehydrogenase at the level of aldehydic groups that are present in the lignin preparations.  相似文献   

12.
Sphingomonas paucimobilis SYK-6 is able to grow on various dimeric lignin compounds, which are converted to vanillate and syringate by the actions of unique lignin degradation enzymes in this strain. Vanillate and syringate are degraded by the O-demethylase and converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, while the results suggested that 3MGA is degraded through another pathway in which PCA 4,5-dioxygenase is not involved. In a 10.5-kb EcoRI fragment carrying the genes for PCA 4,5-dioxygenase (ligAB), 2-pyrone-4,6-dicarboxylate hydrolase (ligI), and a portion of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (ligC), we found the ligJ gene encoding 4-oxalomesaconate (OMA) hydratase, which catalyzes the conversion of OMA into 4-carboxy-4-hydroxy-2-oxoadipate. The ligJ gene is transcribed in the same direction as ligABC genes and consists of an 1,023-bp open reading frame encoding a polypeptide with a molecular mass of 38,008 Da, which is located 73-bp upstream from ligA. The ligJ gene product (LigJ), expressed in Escherichia coli, was purified to near homogeneity and was estimated to be a homodimer (69.5 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9, and the optimal temperature is 30 degrees C. The K(m) for OMA and the V(max) were determined to be 138 microM and 440 U/mg, respectively. LigJ activity was inhibited by the addition of thiol reagents, suggesting that some cysteine residue is part of the catalytic site. The ligJ gene disruption in SYK-6 caused the growth defect on and the accumulation of common metabolites from both vanillate and syringate, indicating that the ligJ gene is essential to the degradation of these two compounds. These results indicated that syringate is converted into OMA via 3MGA, and it enters the PCA 4,5-cleavage pathway.  相似文献   

13.
Summary The inhibitory effects of seven closely related lignin degradation products on xylose fermentation by Klebsiella pneumoniae were studied. Compounds were added in varying concentrations. Less heavily substituted phenolics (at concentrations of, 0.1–0.4 g/l) were more inhibitory to growth and solvent production than vanillyl or syringyl derivatives. All of the cultures recovered from this inhibition after a prolonged incubation period. When the mechanism of the organism's recovery was investigated, GC and LC analysis showed that 43.5% of the vanillin was metabolized to vanillyl alcohol. Several unidentifiable compounds were also detected in trace amounts. K. pneumoniae also metabolized vanilly alcohol (54% of original supplement) and syringaldehyde; however, unlike vanillin, there was no predominant metabolite derived from these compounds. None of the metabolites derived from vanillyl alcohol could be identified while only the corresponding alcohol and trimethoxybenzene were identified among the syringaldehyde derived metabolites.  相似文献   

14.
We isolated Pseudomonas paucimobilis SYK-6, which was able to degrade various dimeric lignin compounds (Y. Katayama, S. Nishikawa, M. Nakamura, K. Yano, M. Yamasaki, N. Morohoshi, and T. Haraguchi, Mokuzai Gakkaishi 33:77-79, 1987). This metabolic process is a distinct characteristic of this bacterium, which is equipped with an enzymatic modification system for various dimeric lignin compounds involved in the tricarboxylic acid cycle. Cleavage of the beta-aryl ether linkage is essential in this process, because this linkage is the most abundant (approximately 50%) in lignin. Here, we report the isolation and characterization of the beta-etherase gene, which contains an open reading frame of 843 bp and which we call ligE. This gene was expressed in Escherichia coli, and the enzyme had the same kinetic properties as the P. paucimobilis SYK-6 enzyme.  相似文献   

15.
Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate (PCA) and 3-O-methylgallate (3MGA) in reactions with the tetrahydrofolate-dependent O-demethylases LigM and DesA, respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, whereas 3MGA is metabolized via three distinct pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and 3MGA O-demethylase (LigM) are involved. In the 3MGA O-demethylation pathway, LigM converts 3MGA to gallate, and the resulting gallate appears to be degraded by a dioxygenase other than LigAB or DesZ. Here, we isolated the gallate dioxygenase gene, desB, which encodes a 418-amino-acid protein with a molecular mass of 46,843 Da. The amino acid sequences of the N-terminal region (residues 1 to 285) and the C-terminal region (residues 286 to 418) of DesB exhibited ca. 40% and 27% identity with the sequences of the PCA 4,5-dioxygenase beta and alpha subunits, respectively. DesB produced in Escherichia coli was purified and was estimated to be a homodimer (86 kDa). DesB specifically attacked gallate to generate 4-oxalomesaconate as the reaction product. The K(m) for gallate and the V(max) were determined to be 66.9 +/- 9.3 microM and 42.7 +/- 2.4 U/mg, respectively. On the basis of the analysis of various SYK-6 mutants lacking the genes involved in syringate degradation, we concluded that (i) all of the three-ring cleavage dioxygenases are involved in syringate catabolism, (ii) the pathway involving LigM and DesB plays an especially important role in the growth of SYK-6 on syringate, and (iii) DesB and LigAB are involved in gallate degradation.  相似文献   

16.
A lignin-related biphenyl compound, 5,5'-dehydrodivanillate (DDVA), is degraded to 5-carboxyvanillate (5CVA) by the enzyme reactions catalyzed by DDVA O-demethylase (LigX), meta-cleavage oxygenase (LigZ), and meta-cleavage compound hydrolase (LigY) in Sphingomonas paucimobilis SYK-6. 5CVA is then transformed to vanillate by a nonoxidative 5CVA decarboxylase and is further degraded through the protocatechuate 4,5-cleavage pathway. A 5CVA decarboxylase gene, ligW, was isolated from SYK-6 (X. Peng, E. Masai, H. Kitayama, K. Harada, Y, Katayama, and M. Fukuda, Appl. Environ. Microbiol. 68:4407-4415, 2002). However, disruption of ligW slightly affected the 5CVA decarboxylase activity and the growth rate on DDVA of the mutant, suggesting the presence of an alternative 5CVA decarboxylase gene. Here we isolated a second 5CVA decarboxylase gene, ligW2, which consists of a 1,050-bp open reading frame encoding a polypeptide with a molecular mass of 39,379 Da. The deduced amino acid sequence encoded by ligW2 exhibits 37% identity with the sequence encoded by ligW. Based on a gas chromatography-mass spectrometry analysis of the reaction product from 5CVA catalyzed by LigW2 in the presence of deuterium oxide, LigW2 was indicated to be a nonoxidative decarboxylase of 5CVA, like LigW. After disruption of ligW2, both the growth rate on DDVA and the 5CVA decarboxylase activity of the mutant were decreased to approximately 30% of the wild-type levels. The ligW ligW2 double mutant lost both the ability to grow on DDVA and the 5CVA decarboxylase activity. These results indicate that both ligW and ligW2 contribute to 5CVA degradation, although ligW2 plays the more important role in the growth of SYK-6 cells on DDVA.  相似文献   

17.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds with guaiacyl moieties, which are converted into protocatechuate by the actions of lignin degradation enzymes in this strain. Protocatechuate is a key metabolite in the SYK-6 degradation of lignin compounds with guaiacyl moieties, and it is thought that it degrades to pyruvate and oxaloacetate via the protocatechuate 4,5-cleavage pathway. In a 10.5-kb EcoRI fragment carrying the protocatechuate 4,5-dioxygenase gene (ligAB) (Y. Noda, S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. J. Bacteriol. 172:2704–2709, 1990), we found the ligI gene encoding 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase. PDC hydrolase is a member of this pathway and catalyzes the interconversion between PDC and 4-carboxy-2-hydroxymuconic acid (CHM). The ligI gene is thought to be transcribed divergently from ligAB and consists of an 879-bp open reading frame encoding a polypeptide with a molecular mass of 32,737 Da. The ligI gene product (LigI), expressed in Escherichia coli, was purified to near-homogeneity and was estimated to be a monomer (31.6 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9. The optimum pH for hydrolysis of PDC is 8.5, the optimum pH for synthesis of PDC is 6.0 to 7.5, and the Km values for PDC and CHM are 74 and 49 μM, respectively. LigI activity was inhibited by the addition of thiol reagents, suggesting that the cysteine residue is a catalytic site. LigI is more resistant to metal ion inhibition than the PDC hydrolases of Pseudomonas ochraceae (K. Maruyama, J. Biochem. 93:557–565, 1983) and Comamonas testosteroni (P. J. Kersten, S. Dagley, J. W. Whittaker, D. M. Arciero, and J. D. Lipscomb, J. Bacteriol. 152:1154–1162, 1982). The insertional inactivation of the ligI gene in S. paucimobilis SYK-6 led to the complete loss of PDC hydrolase activity and to a growth defect on vanillic acid; it did not affect growth on syringic acid. These results indicate that the ligI gene is essential for the growth of SYK-6 on vanillic acid but is not responsible for the growth of SYK-6 on syringic acid.  相似文献   

18.
The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDHATCC 39116 was purified to apparent electrophoretic homogeneity and exhibited NAD+-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Kmr mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Kmr mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.  相似文献   

19.
The gene encoding histamine dehydrogenase in Rhizobium sp. 4--9 has been cloned and overexpressed in Escherichia coli. The coding region of the gene was 2,079 bp and encoded a protein of 693 amino acids with a calculated molecular mass of 76,732 Da. This histamine dehydrogenase was related to histamine dehydrogenase from Nocardioides simplex (54.5% identical), trimethylamine dehydrogenase from Methylophilus methylotrophus (39.3% identical) and dimethylamine dehydrogenase from Hyphomicrobium X (38.1% identical), which have a covalent 6-S-cysteinyl flavin mononucleotide and a [4Fe--4S] cluster as redox cofactors. Sequence alignment and a UV-visible absorption spectrum supported the presence of these cofactors in this histamine dehydrogenase. The investigation of the enzymatic properties suggested that this enzyme exhibited the most excellent substrate specificity toward histamine among all amine oxidases or dehydrogenases found to date. The recombinant enzyme was able to be used for the colorimetric determination of histamine, which gave a linear calibration curve and identical data with conventional methods.  相似文献   

20.
In the present study, we investigated the peroxidase-catalyzed detoxification of model phenolic compounds and evaluated the inhibitory effects of the detoxified solution on butanol production by Clostridium beijerinckii National Collection of Industrial and Marine Bacteria Ltd. 8052. The six phenolic compounds, p-coumaric acid, ferulic acid, 4-hydroxybenzoic acid, vanillic acid, syringaldehyde, and vanillin, were selected as model fermentation inhibitors generated during pretreatment and hydrolysis of lignocellulose. The enzyme reaction was optimized as a function of the reaction conditions of pH, peroxidase concentration, and hydrogen peroxide to substrate ratio. Most of the tested phenolics have a broad optimum pH range of 6.0 to 9. Removal efficiency increased with the molar ratio of H2O2 to each compound up to 0.5–1.25. In the case of p-coumaric acid, ferulic acid, vanillic acid, and vanillin, the removal efficiency was almost 100% with only 0.01 μM of enzyme. The tested phenolic compounds (1 g/L) inhibited cell growth by 64–74%, while completely inhibiting the production of butanol. Although syringaldehyde and vanillin were less toxic on cell growth, the level of inhibition on the butanol production was quite different. The detoxified solution remarkably improved cell growth and surprisingly increased butanol production to the level of the control. Hence, our present study, using peroxidase for the removal of model phenolic compounds, could be applied towards the detoxification of lignocellulosic hydrolysates for butanol fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号