首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycogen content was measured in biopsy sample of human vastus lateralis muscle during prolonged isometric contraction with low force generation. In the first experiment 15% of the maximum voluntary contraction force (MVC) was held for 10 min. Glycogen utilization was 68.1 mmol glucosyl units.kg-1 dry muscle (d.m.). The study was continued by intermittent contractions of 50 s duration and 10 s rest repeated for 50 min. This resulted in a total glycogen utilization of 167.5 mmol glycosyl units.kg-1 d.m. The study was repeated with a force set of 7.5% MVC starting with 20 min continuous contraction followed by the same intermittent contractions for a further 100 min. The glycogen decrease was 15 mmol after the continuous contraction and totally 50 mmol after 2 h with the lower force. Thus the glycogen degradation rate even at low contraction force was related to the force level, being 6 times higher when the force was increased from 7.5 to 15% MVC. With prolonged isometric work periods at work loads corresponding to 15% MVC or higher depletion of the glycogen store can limit work performance capacity.  相似文献   

2.
Motor unit (MU) potentials were recorded from the human rectus femoris and biceps brachii muscles during prolonged isometric contraction. Interspike intervals and intervals between adjacent discharges of 2 MUs (cross-intervals of MU pairs) were measured. Synchronization was expressed by the following criteria: the cross-interval histogram; comparison of the number of coincidences between discharges of 2 MUs observed experimentally with the mean probable number of coincidences; the frequency of appearance of N successive coincidences of spikes from different MU pairs; comparison of the mean duration of interspike intervals preceding a synchronized discharge with the mean duration of the remaining interspike intervals for the same MU. For some MU pairs the number of coinciding spikes was greater than the expected number of random coincidences. Synchronized spikes could form a train of consecutive coincidences. The mean duration of interspike intervals preceding a synchronized discharge was somewhat less than the mean duration of the remaining interspike intervals for MUs forming a synchronously firing pair.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 68–74, January–February, 1972.  相似文献   

3.
4.
The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P < 0.001). The coefficient of variation for interspike interval at recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P < 0.001) and either decreased exponentially or remained constant as target torque increased above recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ~85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P < 0.001). These results indicate that the steadiness of isometric contractions performed with the dorsiflexor muscle depended more on the distributions of mechanical properties than discharge properties across the population of motor units in the tibialis anterior.  相似文献   

5.
It is generally accepted that ischemia produced by limb compression affects rapidly conducting large-diameter Ia afferents in the early stage and that the motor nerve-muscle complex is blocked later. This notion, however, seems to be controversial for several reasons, so an attempt to reveal the amount of motor unit (MU) impairment during ischemia was made. Observation of human soleus muscle electromyographic (EMG) signal recorded either by bipolar needle electrode or by surface electrodes at various levels of voluntary contraction during the course of ischemia showed that low-threshold small MUs were affected first while high-threshold large MUs survived longer. The changes in EMG patterns were temporally correlated with T-reflex deterioration. It is suggested that the early loss of low-threshold MUs may play a definite role in alterations of reflexes during ischemia.  相似文献   

6.
7.
8.
Low frequency audible vibrations are produced by human skeletal muscles undergoing sustained contraction. The effect is easily demonstrable with an electronic stethoscope which amplifies sound below 50 Hz. Autocorrelation analysis of the signal shows that it is periodic with a frequency 25 +/- 2.5 Hz. The quality of the sound is the same for all the skeletal muscles tested and is unaffected by changes in tension, ambient temperature, and blood flow. Electrically-stimulated contraction produces a sound which is indistinguishable from voluntary contraction. The amplitude of the sound increases linearly with tension. The sound signals are uncorrelated both in frequency and phase with electromyographic signals obtained simultaneously while the muscle is contacted. Arguments are presented to show that the sounds may be an intrinsic property of muscle contraction.  相似文献   

9.
To determine the muscular concentration of bradykinin and kallidin during static contraction, microdialysis probes were implanted bilaterally in the trapezius muscles of healthy women. Three hours after probe implantation, 200 microM of the angiotensin-converting enzyme (ACE) inhibitor enalaprilat were added to the perfusion solution in one of the sides for 30 min. Thirty minutes later, the subjects performed a sustained bilateral shoulder abduction at 10% of the maximal voluntary contraction until exhaustion. This protocol was repeated twice, with an interval of at least 17 days. High intersession repeatability was observed in the concentration of bradykinin but not of kallidin. Enalaprilat induced a significant increase in bradykinin levels in the dialysate, without affecting kallidin levels. The sustained contraction induced a significant increase in dialysate levels of both kinin peptides. The contraction also induced a significant increase in pain ratings, as measured by a visual analog scale. During contraction, positive correlations were found between pain ratings and levels of kinin peptides in dialysate, predominantly in the side previously perfused with enalaprilat. Subjects with the higher pain ratings also showed larger increases in kinin peptides in the side previously perfused with enalaprilat. The present results show that both plasma and tissue kinin-kallikrein are activated during muscle contraction, but that their metabolic pathways are differently regulated during rest and contraction, because they showed a different response to ACE inhibition. They also indicate that intramuscular kinin peptides levels, and ACE activity, may contribute to muscle pain.  相似文献   

10.
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.  相似文献   

11.
The purpose of this brief review is to examine the neural adaptations associated with training, by focusing on the behavior of single motor units. The review synthesizes current understanding on motor unit recruitment and rate coding during voluntary contractions, briefly describes the techniques used to record motor unit activity, and then evaluates the adaptations that have been observed in motor unit activity during maximal and submaximal contractions. Relatively few studies have directly compared motor unit behavior before and after training. Although some studies suggest that the voluntary activation of muscle can increase slightly with strength training, it is not known how the discharge of motor units changes to produce this increase in activation. The evidence indicates that the increase is not attributable to changes in motor unit synchronization. It has been demonstrated, however, that training can increase both the rate of torque development and the discharge rate of motor units. Furthermore, both strength training and practice of a force-matching task can evoke adaptations in the discharge characteristics of motor units. Because the variability in discharge rate has a significant influence on the fluctuations in force during submaximal contractions, the changes produced with training can influence motor performance during activities of daily living. Little is known, however, about the relative contributions of the descending drive, afferent feedback, spinal circuitry, and motor neuron properties to the observed adaptations in motor unit activity.  相似文献   

12.
The mechanomyographic (MMG) signal analysis has been performed during single motor unit (MU) contractions of the rat medial gastrocnemius muscle. The MMG has been recorded as a muscle surface displacement by using a laser distance sensor. The profiles of the MMG signal let to categorize these signals for particular MUs into three classes. Class MMG-P (positive) comprises MUs with the MMG signal similar to the force signal profile, where the distance between the muscle surface and the laser sensor increases with the force increase. The class MMG-N (negative) has also the MMG profile similar to the force profile, however the MMG is inverted in comparison to the force signal and the distance measured by using laser sensor decreases with the force increase. The third class MMG-M (mixed) characterize the MMG which initially increases with the force increases and when the force exceeds some level it starts to decrease towards the negative values. The semi-pennate muscle model has been proposed, enabling estimation of the MMG generated by a single MU depending on its localization. The analysis have shown that in the semi-pennate muscle the localization of the MU and the relative position of the laser distance sensor determine the MMG profile and amplitude. Thus, proposed classification of the MMG recordings is not related to the physiological types of MUs, but only to the MU localization and mentioned sensor position. When the distance sensor is located over the middle of the muscle belly, a part of the muscle fibers have endings near the location of the sensor beam. For the MU MMG of class MMG-N the deflection of the muscle surface proximal to the sensor mainly influences the MMG recording, whereas for the MU MMG class MMG-P, it is mainly the distal muscle surface deformation. For the MU MMG of MMG-M type the effects of deformation within the proximal and distal muscle surfaces overlap. The model has been verified with experimental recordings, and its responses are consistent and adequate in comparison to the experimental data.  相似文献   

13.
Maximal isometric force and electromyograph (EMG) activity of biceps brachii muscle during bilateral sustained elbow flexion were followed in 25 right-handed oarsmen. The percentage decline in force was greater for the left than for the right arm. Also, the mean power frequency (MPF) and the root mean square (rms) value of the EMG amplitude decreased more for the left than for the right arm. It was hypothesized that a common drive would indicate that the two forces curves would be highly correlated during the nonfatigued period, but the level of cross-correlation would decline during muscle fatigue. For the first 4 s of the contraction, the cross-correlation between the right and left force was high (r = 0.99), but thereafter it declined rapidly to a constant level. The decline of the cross-correlation was accompanied by a similar decrease in the correlation between the right and left EMG activations (MPF and rms). Thus, the decline in the cross-correlation level of force accompanied by a similar decrease in the correlation level of EMG would suggest a fatigue-induced neural derangement of the common drive.  相似文献   

14.
During sustained maximal voluntary contractions (MVCs), most fatigue occurs within the muscle, but some occurs because voluntary activation of the muscle declines (central fatigue), and some of this reflects suboptimal output from the motor cortex (supraspinal fatigue). This study examines whether supraspinal fatigue occurs during a sustained submaximal contraction of 5% MVC. Eight subjects sustained an isometric elbow flexion of 5% MVC for 70 min. Brief MVCs were performed every 3 min, with stimulation of the motor point, motor cortex, and brachial plexus. Perceived effort and pain, elbow flexion torque, and surface EMGs from biceps and brachioradialis were recorded. During the sustained 5% contraction, perceived effort increased from 0.5 to 3.9 (out of 10), and elbow flexor EMG increased steadily by approximately 60-80%. Torque during brief MVCs fell to 72% of control values, while both the resting twitch and EMG declined progressively. Thus the sustained weak contraction caused fatigue, some of which was due to peripheral mechanisms. Voluntary activation measured by motor point and motor cortex stimulation methods fell to 90% and 80%, respectively. Thus some of the fatigue was central. Calculations based on the fall in voluntary activation measured with cortical stimulation indicate that about two-thirds of the fatigue was due to supraspinal mechanisms. Therefore, sustained performance of a very low-force contraction produces a progressive inability to drive the motor cortex optimally during brief MVCs. The effect of central fatigue on performance of the weak contraction is less clear, but it may contribute to the increase in perceived effort.  相似文献   

15.
During normal daily activity, muscle motor units (MUs) develop unfused tetanic contractions evoked by trains of motoneuronal firings at variable interpulse intervals (IPIs). The mechanical responses of a MU to successive impulses are not identical. The aim of this study was to develop a mathematical approach for the prediction of each response within the tetanus as well as the tetanic force itself. Experimental unfused tetani of fast and slow rat MUs, evoked by trains of stimuli at variable IPIs, were decomposed into series of twitch-shaped responses to successive stimuli using a previously described algorithm. The relationships between the parameters of the modeled twitches and the tetanic force level at which the next response begins were examined and regression equations were derived. Using these equations, profiles of force for the same and different stimulation patterns were mathematically predicted by summating modeled twitches. For comparison, force predictions were made by the summation of twitches equal to the first one. The recorded and the predicted tetanic forces were compared. The results revealed that it is possible to predict tetanic force with high accuracy by using regression equations. The force predicted in this way was much closer to the experimental record than the force obtained by the summation of equal twitches, especially for slow MUs. These findings are likely to have an impact on the development of realistic muscle models composed of MUs, and will assist our understanding of the significance of the neuronal code in motor control and the role of biophysical processes during MU contractions.  相似文献   

16.
The chemical states of a cross-bridge--nucleotide complex were studied using a fluorescent ATP analogue, 1-N6-etheno-2-aza-ATP(epsilon-2-aza-ATP). The fluorescence of epsilon-2-aza-ATP at specific emission wavelengths was enhanced by 12.5 times upon binding to myosin in a relaxed muscle and the fluorescence from the resultant myosin(M)-epsilon-2-aza-ADP-Pi intermediate was 2.5 times greater than that from a M-epsilon-2-aza-ADP complex. Similar enhancements of the fluorescence of epsilon-2-aza-ATP and epsilon-2-aza-ADP were observed upon binding to heavy meromyosin in solution. Binding of F-actin did not change the fluorescence of epsilon-2-aza-ATP or epsilon-2-aza-ADP bound to heavy meromyosin. When a muscle went from a relaxed state to a state of isometric contraction or contraction with shortening, the fluorescence intensity decreased only slightly or not at all, i.e. the fluorescence of nucleotides bound to most of the myosin heads during contraction is the same as that of the M-epsilon-2-aza-ADP-Pi intermediate. These results suggest that an actomyosin(AM)-epsilon-2-aza-ADP-Pi intermediate is the predominant attached state during contraction. When the ionic strength of the relaxing solution was decreased, cross-bridges formed at 6 degrees C without tension generation. At 20 degrees C, a large tension was produced although the shortening velocity was negligibly small or zero. The fluorescence intensity decreased by 15% at 20 degrees C but only a small decrease of 3% was observed at 6 degrees C, suggesting that the predominant complexes in the attached state were AM-epsilon-2-aza-ATP and/or AM-2-aza-ADP-Pi at 6 degrees C and AM-epsilon-2-aza-ADP at 20 degrees C. Thus, the identification of the actomyosin-nucleotide complexes existing before and after the force-generating step lent further support to the conclusion that the sliding force is generated by conformational changes in actomyosin when the (epsilon-2-aza-)ADP-Pi complex is bound to it.  相似文献   

17.
18.
19.
In previous studies on mechanomyogram (MMG) signals no analysis of these signals accompanying force generation has been performed. Therefore, we have recorded MMG signals (previously referred to as muscle sound or acoustomyographic signals) during voluntary contractions of forefinger flexor muscles in 31 young subjects. These subjects made contractions to produce force records of triangular or trapeziform shape. The peak target force amounted to 10, 20 or 40 N which represented less than 40% of maximal voluntary contraction. The MMG signals during the transient phases of force generation at three different rates were analysed. The MMG intensity level calculated for MMG records and the peak-to-peak amplitude of MMG signals correlated with both the velocity of force increase and the contraction force. The occurrence of the strongest MMG signals corresponded to changes in contractile force. Therefore, it is suggested that measurements of these parameters could be a useful tool in studies of changes in contractile force. Accepted: 11 March 1998  相似文献   

20.
We constructed cross-correlograms (CCGs) of action potentials of pairs of motor units (MUs) of human soleus, triceps brachii, and the first and second dorsal interosseous muscles. During voluntary muscle contraction, a pronounced peak in the zero bin was found in 21 out of 126 pairs investigated with the aid of the CCG; this indicates that the number of coincidental firings exceeded chance. The width of the peak did not exceed 5 msec (synchronization for a brief interval, i.e., short-term synchronization). When motoneurons of the soleus muscle were activated by vibration, correlations were found in 12 out 89 pairs of MUs investigated. On the CCGs of action potentials of MU pairs in two muscles (the first and second dorsal interosseous muscles), such correlations were found in four out of 10 pairs investigated. In all of these cases, the ratio of above-change coincidences relative to the total number of MU discharges was small, from 3.0 to 6.1%. Synchronization within a brief time interval can be considered a result of simultaneous creation of EPSPs in motoneourons reached by endings of a single pre-motor nerve fiber. In some pairs of MUs, long term synchronization (clustering) occurred, ie., synchronization lasting several tens of milliseconds. The long-term synchronization can be considered a manifestation of fatigue accompanying tremor.Institute for Problems of Information Transmission, Russian Academy of Sciences, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 691–698, November–December, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号