首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
The PC motif is evolutionarily conserved together with the PB1 domain, a binding partner of the PC motif-containing protein. For interaction with the PB1 domain, the PC motif-containing region (PCCR) comprising the PC motif and its flanking regions is required. Because the PB1 domain and the PCCR are novel binding modules found in a variety of signaling proteins, their structural and functional characterization is crucial. Bem1p and Cdc24p interact through the PB1-PCCR interaction and regulate cell polarization in budding yeast. Here, we determined a tertiary structure of the PCCR of Cdc24p by NMR. The tertiary structure of the PCCR is similar to that of the PB1 domain of Bem1p, which is classified into a ubiquitin fold. The PC motif portion takes a compact betabetaalpha-fold, presented on the ubiquitin scaffold. Mutational studies indicate that the PB1-PCCR interaction is mainly electrostatic. Based on the structural information, we group the PB1 domains and the PCCRs into a novel family, named the PB1 family. Thus, the PB1 family proteins form a specific dimer with each other.  相似文献   

4.
5.
6.
7.
8.
The Kruppel-like factor 5 (KLF5/IKLF) belongs to the Kruppel family of genes which bind GC-rich DNA elements and activate or repress their target genes in a promoter context and/or cellular environment-dependent manner. In the present study, we used the Gal4 fusion assay system to characterize the mechanism of transactivation by KLF5. We demonstrated that the transactivation function of KLF5 was enhanced by CREB-binding protein (CBP) and blocked by wild-type but not mutant E1A. Over expression of CBP reversed the inhibition effect of E1A. With various lengths of KLF5 fusion protein, the transactivation functions were localized to 156 amino acid residues at the N-terminal region and 133 amino acid residues adjacent to the Zn finger motif. We mapped the CBP and KLF5 interaction domain to the N-terminal region of CBP (amino acids 1–232) and the N-terminal region of KLF5 (amino acids 1–238) where one of the activation functions resides. The histone acetyltransferase (HAT) activity of CBP does not play a role in the transactivation function of KLF5 nor does it acetylate KLF5 in vitro. However, phosphorylation is important in KLF5 transactivation activity. Inhibition of protein kinase activity by H7 or calphostin C blocked both full-length and N-terminal fragment (amino acids 1–238) KLF5 activities. Mutation at a potential protein kinase C phosphorylation site within the CBP interaction domain of KLF5 reduces its transactivation function. Furthermore, using the GST pull-down approach, we showed that phosphorylation of KLF5 enhances its interaction with CBP. The results of the present study provide a mechanism for KLF5 transactivation function.  相似文献   

9.
Menon RP  Strom M  Hughes RC 《FEBS letters》2000,470(3):227-231
We have used the yeast two-hybrid system to search for cytoplasmic proteins that might assist in the intracellular trafficking of the soluble beta-galactoside-binding protein, galectin-3. We utilised as bait murine full-length galectin-3 to screen a murine 3T3 cDNA library. Several interacting clones were found to encode a partial open reading frame and a full-length clone was obtained by rapid amplification of cDNA ends methodology. In various assays in vitro the novel protein was shown to bind galectin-3 in a carbohydrate-independent manner. The novel protein contains an unusually high content of cysteine and histidine residues and shows significant sequence homologies with several metal ion-binding motifs present in known proteins. Confocal immunofluorescence microscopy of permeabilised 3T3 cells shows a prominent perinuclear, as well as cytoplasmic, localisation of the novel protein.  相似文献   

10.
Disease resistance in plants requires the activation of defense signaling pathways to prevent the spread of infection. The protein Required for Mla12 Resistance (RAR1) is a component of such pathways, which contains cysteine- and histidine-rich domains (CHORDs) that bind zinc. CHORDs are 60 amino acid domains, usually arranged in tandem, found in almost all eukaryotes, where they are involved in processes ranging from pressure sensing in the heart to maintenance of diploidy in fungi, and exhibit distinct protein-protein interaction specificity. In the case of RAR1, CHORD-I is known to interact with heat-shock protein 90 (HSP90) and CHORD-II is known to interact with the Suppressor of the G2 allele of Skp1 (SGT1). The focus of this work on RAR1 from barley and Arabidopsis was to address the paucity of biochemical information on RAR1 and its constituent CHORDs, particularly the role of the metal ion. Sedimentation experiments indicated RAR1 to be an extended monomer in solution with few intramolecular interactions. This was reinforced by denaturation experiments, where little difference between the stability of the individual domains and intact RAR1 could be detected by intrinsic tryptophan fluorescence. Electrospray ionization-mass spectrometry and atomic absorption showed that, contrary to previous reports, RAR1 binds five zinc ions; each CHORD binds two, and the plant-specific, 20 amino acid cysteine- and histidine-containing motif (CCCH motif) located between the two CHORDs binds the fifth. Fluorescence, ultraviolet circular dichroism (UV CD), and nuclear magnetic resonance (NMR) spectroscopy further demonstrated that zinc ions are essential for maintaining CHORD structure. Finally, we used isothermal titratrion colarimetry to show that zinc is essential for the specific binding interactions of CHORD-II with SGT1. Our study provides the first biochemical and biophysical data on the zinc metalloprotein RAR1, defines its metal stoichiometry and that of its constituent CHORDs, and reveals that the metal ions are essential for structural integrity and specific protein-protein associations.  相似文献   

11.
12.
13.
14.
15.
16.
CED-4, a pro-apoptotic factor in Caenorhabditis elegans, activates the cell death protease CED-3. CED-9 directly binds to CED-4 and represses this. However, it has remained unclear whether a mammalian CED-9 homologue, Bcl-XL, inhibits the function of the mammalian CED-4 homologue, Apaf-1, by direct binding. To analyze the interaction, we adopted a yeast two-hybrid system. Since Bcl-XL and the CED-4-like portion of Apaf-1 failed to exhibit a positive result in the assay, we prepared "fragment libraries" of bcl-XL or apaf-1 cDNA. By screening of the apaf-1 "fragment library," we obtained nine clones interacting with Bcl-XL, all containing the same region within the ATPase domain, designated BBR: the Bcl-XL binding region. Binding of BBR to Bcl-XL was also confirmed by immunoprecipitation assays. Bcl-2, Bcl-w, A1/Bfl-1, and Boo/Diva failed to show the same capacity for binding to BBR as Bcl-XL. These results indicate that Bcl-XL directly binds to a specific region in Apaf-1.  相似文献   

17.
18.
A determination of the zinc stoichiometry of the catalytic domain of the human matrix metalloproteinase stromelysin-1 has been carried out using enzyme purified from recombinant Escherichia coli that express C-terminally truncated protein. Atomic absorption spectrometry revealed that both the proenzyme (prostrom255) and the mature active form (strom255) contained nearly 2 mol of Zn/mol of protein. Full-length prostromelysin purified from a mammalian cell culture line also contained zinc in excess of 1 equiv. While zinc in prostrom255 could not be removed by dialysis against o-phenanthroline, similar treatment of mature strom255 resulted in the loss of one-half of the original zinc content. The peptidase activity of the zinc-depleted protein was reduced by greater than 85% but could be restored upon addition of Zn2+ or Co2+. Addition of a thiol-containing inhibitor to a CoZn hybrid enzyme resulted in marked spectral changes in both the visible and ultraviolet regions characteristic of sulfur ligation to Co2+. This direct evidence for an integral role in catalysis and inhibitor binding confirms the location of the exchangeable metal at the active site. To examine the environment of zinc in the proenzyme, a fully cobalt-substituted proenzyme was prepared by in vivo metal replacement. The absorbance features of dicobalt prostrom255 were consistent with metal coordination by the single cysteine present in the propeptide, although the data do not allow assignment to a particular zinc site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号