首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of a CCHHC zinc-binding domain from neural zinc finger factor-1 (NZF-1) has been determined in solution though the use of NMR methods. This domain is a member of a family of domains that have the Cys-X(4)-Cys-X(4)-His-X(7)-His-X(5)-Cys consensus sequence. The structure determination reveals a novel fold based around a zinc(II) ion coordinated to three Cys residues and the second of the two conserved His residues. The other His residue is stacked between the metal-coordinated His residue and a relatively conserved aromatic residue. Analysis of His to Gln sequence variants reveals that both His residues are required for the formation of a well-defined structure, but neither is required for high-affinity metal binding at a tetrahedral site. The structure suggests that a two-domain protein fragment and a double-stranded DNA binding site may interact with a common two-fold axis relating the two domains and the two half-sites of the DNA-inverted repeat.  相似文献   

2.
W T Miller  K A Hill  P Schimmel 《Biochemistry》1991,30(28):6970-6976
Escherichia coli alanyl-tRNA synthetase contains the sequence Cys-X2-Cys-X6-His-X2-His. This motif is distinct from the zinc fingers of DNA-binding proteins but has some similarity to the Cys-X2-Cys-X4-His-X4-Cys zinc-binding motif of retroviral gag proteins, where it has a role in RNA packaging. In Ala-tRNA synthetase, this sequence is located in an amino-terminal domain which has the site for docking the acceptor end of the tRNA near the bound aminoacyl adenylate and is immediately adjacent in the sequence to the location of a mutation that affects the specificity of tRNA recognition. We show here that Ala-tRNA synthetase contains approximately 1 mol of zinc/mol of polypeptide and that addition of the zinc chelator 1,10-phenanthroline inhibits its aminoacylation activity. Conservative mutations of specific cysteine or histidine residues in the "Cys-His box" destabilize and inactivate the enzyme, whereas mutations of intervening amino acids do not inactivate. The possibility that this motif can bind zinc (or cobalt) was demonstrated with a synthetic 22 amino acid peptide that is based on the sequence of the alanine enzyme. The peptide-cobalt complex has the spectral characteristics of tetrahedral coordination geometry. The results establish that the Cys-His box motif of Ala-tRNA synthetase has the potential to form a specific complex with zinc (at least in the context of a synthetic peptide analogue) and suggest that this motif is important for enzyme stability/activity.  相似文献   

3.
A randomly generated mutation in Escherichia coli alanine tRNA synthetase compensates for a mutation in its cognate tRNA. The enzyme's mutation occurs next to a Cys-X2-Cys-X6-His-X2-His metal-binding motif that is distinct from the zinc finger motif found in some DNA-binding proteins. Instead, the synthetase's metal binding domain resembles the Cys-X2-Cys-X4-His-X4-Cys metal-binding domain of the gag gene product of retroviruses. For Ala-tRNA synthetase, the metal bound at the Cys-His motif is important specifically for the tRNA-dependent step of catalysis, and the enzyme-tRNA interaction is dependent on the geometry of metal co-ordination to the enzyme. These data, and the demonstrated sensitivity of RNA packaging to mutations in the metal-binding domain of the gag gene product of retroviruses, suggest that an aminoacyl-tRNA synthetase and retroviruses have adopted a related metal-binding motif for RNA recognition.  相似文献   

4.
A cDNA clone (OsRHC1) was obtained, which encodes a novel RING zinc finger protein sharing similar structural features (multiple transmembrane domains at the N-half; a unique RING zinc finger consensus Cys-X(2)-Cys-X(11)-Cys-X-His-X(3)-Cys-X(2)-Cys-X(6)-Cys-X(2)-Cys at the C terminus) to a group of closely related annotated proteins from both monocots and dicots. OsRHC1 was found to be localized on plasma membrane of rice cells and induced by wounding in rice lines containing Xa loci. Ecotopic expression of the OsRHC1 cDNA from rice (a monocot) in transgenic Arabidopsis thaliana (a dicot) enhanced the defence response toward Pseudomonas syringae pv. tomato DC3000, suggesting that OsRHC1 may confer broad-spectrum disease resistance. The protective effects were neutralized in the presence of MG132 or in an npr1-3 mutation background, indicating that the function of OsRHC1 is dependent on the ubiquitin-mediated protein degradation via the 26S proteasome and the presence of the key defence response regulator NPR1.  相似文献   

5.
Zinc finger (ZF) domains in retroviral nucleocapsid proteins usually contain one histidine per metal ion coordination complex (Cys-X(2)-Cys-X(4)-His-X(4)-Cys). Visna virus nucleocapsid protein, p8, has two additional histidines (in the second of its two ZFs) that could potentially bind metal ions. Absorption spectra of cobalt-bound ZF2 peptides were altered by Cys alkylation and mutation, but not by mutation of the extra histidines. Our results show that visna p8 ZFs involve three Cys and one His in the canonical spacing in metal ion coordination, and that the two additional histidines appear to interact with nucleic acid bases in p8-DNA complexes.  相似文献   

6.
Gaines P  Woodard CT  Carlson JR 《Gene》1999,239(1):137-143
A gene identified from an enhancer trap screen is shown to encode the Drosophila melanogaster homolog of the L37a ribosomal protein. The predicted 92 amino-acid sequence of this protein is 78% identical to mammalian L37a proteins, and contains a conserved Cys-X2 Cys-X14-Cys-X2-Cys zinc finger motif that may be involved in interactions with ribosomal RNA. The Drosophila L37a homolog is a single copy gene comprised of four exons and is ubiquitously expressed throughout the animal. Cytological localization reveals that Drosophila L37a maps to position 25C1-3, very near the previously described Minute mutation M(2)25C.  相似文献   

7.
8.
The recently identified human NEIL2 (Nei-like-2) protein, a DNA glycosylase/AP lyase specific for oxidatively damaged bases, shares structural features and reaction mechanism with the Escherichia coli DNA glycosylases, Nei and Fpg. Amino acid sequence analysis of NEIL2 suggested it to have a zinc finger-like Nei/Fpg. However, the Cys-X2-His-X16-Cys-X2-Cys (CHCC) motif present near the C terminus of NEIL2 is distinct from the zinc finger motifs of Nei/Fpg, which are of the C4 type. Here we show the presence of an equimolar amount of zinc in NEIL2 by inductively coupled plasma mass spectrometry. Individual mutations of Cys-291, His-295, Cys-315, and Cys-318, candidate residues for coordinating zinc, inactivated the enzyme by abolishing its DNA binding activity. H295A and C318S mutants were also shown to lack bound zinc, and a significant change in their secondary structure was revealed by CD spectra analysis. Molecular modeling revealed Arg-310 of NEIL2 to be a critical residue in its zinc binding pocket, which is highly conserved throughout the Fpg/Nei family. A R310Q mutation significantly reduced the activity of NEIL2. We thereby conclude that the zinc finger motif in NEIL2 is essential for its structural integrity and enzyme activity.  相似文献   

9.
10.
11.
The FILAMENTOUS FLOWER gene from Arabidopsis thaliana is a member of a gene family whose role is to specify abaxial cell fate in lateral organs. Analysis of the amino-terminal region of the FILAMENTOUS FLOWER protein suggests that seven cysteine residues at positions 14, 26, 30, 33, 54, 56, and 57, and two histidine residues at positions 18 and 24 contribute to a putative zinc finger motif, Cys-X(3)-His-X(5)-His-X-Cys-X(3)-Cys-X(2)-Cys-X(20)-Cys-X-Cys-Cys. Zinc determination experiments revealed that the FILAMENTOUS FLOWER protein binds two zinc ions per molecule. Chemical modification was required to release one zinc ion, whereas the other was released spontaneously or more rapidly in the presence of metallochromic indicator. The loss of a zinc ion and the subsequent structural change of the zinc finger domain were correlated with the multimerization of the FILAMENTOUS FLOWER protein. A cysteine residue at position 56 in the FILAMENTOUS FLOWER protein potentially interferes with zinc ligation within the zinc finger and causes this zinc release. In support of this, substitution of the Cys(56) by alanine suppressed both the zinc release and the multimerization of the FILAMENTOUS FLOWER protein. Deletion analysis showed that the region between positions 45 and 107 functions in the intermolecular contacts between FILAMENTOUS FLOWER proteins. This region corresponds to the carboxyl-terminal half of the zinc finger domain and the following hydrophobic region containing two putative alpha-helices. Our results suggest that the FILAMENTOUS FLOWER protein forms a range of different conformers. This attribute may lead to a greater degree of functional flexibility that is central to its role as an abaxial cell fate regulator.  相似文献   

12.
A Cryptosporidium parvum sporozoite and oocyst lambda gt11 cDNA library was screened with a hyperimmune rabbit serum that was developed against insoluble fragments of ultrasonicated oocysts. A clone named Cp22.4.1 encoding a protein of 231 amino acids with 4 zinc-finger domains characterized by a Cys-X2-Cys-X4-His-X4-Cys motif was isolated and characterized. There was a complete match between the sequencing data of the coding region of Cp22.4.1 and the corresponding gene at chromosomal level. Cloning in a pBAD-TOPO-TA expression vector permitted to evaluate the antigenicity of the recombinant His-tagged antigen. This antigen was recognized by 2 out of 5 sera from Cryptosporidium immune calves and not by sera from parasite naive animals.  相似文献   

13.
14.
The recent finding that Bacillus stearothermophilus adenylate kinase contains a zinc atom coordinated to four cysteines prompted us to investigate the metal-binding properties of the enzyme from various bacteria. We conclude that zinc was present only in adenylate kinase from gram-positive species and that this property is correlated with the presence of three or four Cys residues in the sequence Cys-X2-Cys-X16-Cys-X2-Cys/Asp, in which X stands for different amino acid residues.  相似文献   

15.
Nup475 (also known as tristetraprolin and TIS11) includes two zinc-binding domains of the form Cys-X8-Cys-X5-Cys-X3-His. These domains are required for rapid degradation of tumor necrosis factor (TNF) and other mRNAs through the interaction with AU-rich elements in their 3'-untranslated regions. The three-dimensional solution structure of the first domain was determined by multidimensional nuclear magnetic resonance spectroscopy, revealing a novel fold around a central zinc ion. The core structure is disk-like with a diameter of approximately 25 A and a width of approximately 12 A. This structure provides a basis for evaluating the role of individual residues for structural stability and for nucleic acid binding.  相似文献   

16.
Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core finger domain, while the side chains of Ser68 and Asn75 appear to form hydrogen bonds that stabilize the overall fold of this domain. These residues outside of the core finger structure are conserved in D-type and related retroviral NCPs, e.g., MMTV NCP, suggesting that the structure of MPMV NCP may be representative of this subclass of retroviral NCPs.  相似文献   

17.
All retroviruses contain, in the nucleocapsid domain of the Gag protein, one or two copies of the sequence Cys-X2-Cys-X4-His-X4-Cys. We have generated a series of mutants in the two copies of this motif present in human immunodeficiency virus type 1. These mutants encoded virus particles that were apparently composed of the normal complement of viral proteins but contained only 2 to 20% of the normal level of genomic RNA. No infectivity could be detected in the mutant particles, while 10(5) infectious U were present in an equivalent amount of wild-type particles. Thus, the mutants have another defect in addition to the inefficiency with which they encapsidate genomic RNA. Our results show that both copies of the motif are required for normal RNA packaging and for infectivity. Mutants of this type may have important applications, including nonhazardous materials for research, immunogens in vaccine and immunotherapy studies, and diagnostic reagents.  相似文献   

18.
The nucleic acid interactive properties of a synthetic peptide with sequence of the N-terminal CCHC zinc finger (CCHC = Cys-X2-Cys-X4-His-X4-Cys; X = variable amino acid) of the human immunodeficiency virus (HIV) nucleocapsid protein, Zn(HIV1-F1), have been studied by 1H NMR spectroscopy. Titration of Zn(HIV1-F1) with oligodeoxyribonucleic acids containing different nucleotide sequences reveals, for the first time, sequence-dependent binding that requires the presence of at least one guanosine residue for tight complex formation. The dynamics of complex formation are sensitive to the nature of the residues adjacent to guanosine, with residues on the 3' side of guanosine having the largest influence. An oligodeoxyribonucleotide with sequence corresponding to a portion of the HIV-1 psi-packaging signal, d(ACGCC), forms a relatively tight complex with Zn(HIV1-F1) (Kd = 5 x 10(-6) M). Two-dimensional nuclear Overhauser effect (NOESY) data indicate that the bound nucleic acid exists predominantly in a single-stranded, A-helical conformation, and the presence of more than a dozen intermolecular NOE cross peaks enabled three-dimensional modeling of the complex. The nucleic acid binds within a hydrophobic cleft on the peptide surface. This hydrophobic cleft is defined by the side chains of residues Val1, Phe4, Ile12, and Ala13. Backbone amide protons of Phe4 and Ala13 and the backbone carbonyl oxygen of Lys2 that lie within this cleft appear to form hydrogen bonds with the guanosine O6 and N1H atoms, respectively. In addition, the positively charged side chain of Arg14 is ideally positioned for electrostatic interactions with the phosphodiester backbone of the nucleic acid. The structural findings provide a rationalization for the general conservation of these hydrophobic and basic residues in CCHC zinc fingers, and are consistent with site-directed mutagenesis results that implicate these residues as direct participants in viral genome recognition.  相似文献   

19.
Mechanism of activation of the vav protooncogene   总被引:20,自引:0,他引:20  
vav is a human locus that appears to be specifically expressed in cells of hematopoietic origin regardless of their differentiation lineage. This gene was first identified as a result of its malignant activation during the course of gene transfer assays (Katzav, S., Martin-Zanca, D., and Barbacid, M. EMBO J., 8: 2283-2290, 1989). In this study, we report the isolation of complementary DNA clones containing the entire coding sequence of the mouse vav protooncogene. Antisera raised against a peptide corresponding to a predicted hydrophilic domain have allowed us to identify the product of the vav gene as a 95,000 Da protein. Analysis of the deduced amino acid sequence of p95vav revealed an amino-terminal leucine-rich region not present in the activated vav oncogene. This region consists of an amphipathic helix-loop-helix followed by a leucine zipper, a structure reminiscent of the carboxy-terminal region of myc proteins and the steroid binding domain of nuclear receptors. In vitro mutagenicity studies have indicated that removal of the amphipathic helix-loop-helix is sufficient to activate the transforming potential of human and mouse vav protooncogenes. vav proteins also possess a cysteine-rich domain whose sequence predicts the formation of two putative metal binding-like domains, Cys-X2-Cys-X13-Cys-X2-Cys and His-X2-Cys-X6-Cys-X2-His. Replacement of some of these cysteine and histidine residues completely abolished the transforming activity of vav genes. Further examination of the alignment of cysteine residues in this region revealed an alternative structure, Cys-X2-Cys-X13-Cys-X2-Cys-X7-Cys-X6-Cys, which is reminiscent of the phorbol ester binding domain of protein kinase C. A similar domain has been recently identified in a second enzyme, diacylglycerol kinase. These structural similarities, along with its expression pattern, suggest that the vav protooncogene codes for a new type of signal-transducing molecule that may play an important role in controlling hematopoiesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号