首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Personal access to sequence databases on personal computers.   总被引:6,自引:0,他引:6       下载免费PDF全文
A comprehensive package of software has been developed to access nucleic acid and protein sequence databases on stand-alone IBM personal computers. The software combines keyword search on the annotation fields of the data with pattern matching algorithms on the biological sequences. Sequences containing complex sites like promoters or kink sites can be identified as well as sequences that are similar to a query sequence. Protein sequences with particular patterns of amino acids such as hydrophobic regions can be identified as well. Considering the relatively inexpensive hard disks now available, personal computers have become a cost-effective alternative to mainframe processing for sequence databases.  相似文献   

2.
Portable microcomputer software for nucleotide sequence analysis.   总被引:27,自引:10,他引:17       下载免费PDF全文
B Fristensky  J Lis    R Wu 《Nucleic acids research》1982,10(20):6451-6463
The most common types of nucleotide sequence data analyses and handling can be done more conveniently and inexpensively on microcomputers than on large time-sharing systems. We present a package of computer programs for the analysis of DNA and RNA sequence data which overcomes many of the limitations imposed by microcomputers, while offering most of the features of programs commonly available on large computers, including sequence numbering and translation, restriction site and homology searches with dot-matrix plots, nucleotide distribution analysis, and graphic display of data. Most of the programs were written in Standard Pascal (on an Apple II computer) to facilitate portability to other micro-, mini-, and and mainframe computers.  相似文献   

3.
There is an increasing recognition that detailed nucleic acid sequence information will be useful and even required in the diagnosis, treatment and surveillance of many significant pathogens. Because generating detailed information about pathogens leads to significantly larger amounts of data, it is necessary to develop automated analysis methods to reduce analysis time and to standardize identification criteria. This is especially important for multiple pathogen assays designed to reduce assay time and costs. In this paper, we present a successful algorithm for detecting pathogens and reporting the maximum level of detail possible using multi-pathogen resequencing microarrays. The algorithm filters the sequence of base calls from the microarray and finds entries in genetic databases that most closely match. Taxonomic databases are then used to relate these entries to each other so that the microorganism can be identified. Although developed using a resequencing microarray, the approach is applicable to any assay method that produces base call sequence information. The success and continued development of this approach means that a non-expert can now perform unassisted analysis of the results obtained from partial sequence data.  相似文献   

4.
Shaw G 《BioTechniques》2000,28(6):1198-1201
Biologists today make extensive use of word processing programs for the production of research reports, literature reviews and grant proposals. Frequently, such programs become the default platform for viewing and the later publication of protein and nucleic acid sequence data. Thus, researchers often switch between their word processor and more specialized programs designed to analyze protein and nucleic acid sequences. It would be more convenient to perform these simple sequence analyses using the word processor without switching to another program. The focus here is on the use of the Visual Basic programming language, which is built into all recent versions of Microsoft Word to generate surprisingly complex and useful macros that can conveniently analyze several important features of protein and nucleic acid sequences. The standard Word interface can also be easily modified to display and run these macros from a pull-down menu. Several examples of this approach are provided.  相似文献   

5.
Watson-Crick base pairing is a natural molecular recognition process that has been exploited in molecular biology and universally adopted in many fields. An additional mode of nucleic acid sequence recognition that could be used in combination with normal base pairing would add an exta dimension to nucleic acid interactions and open up many new applications. In principle the triplex approach could provide this if developed to recognize any DNA sequence. To this end modified nucleosides have been incorporated into triple-helix-forming oligonucleotides (TFOs) and used to recognize mixed sequence DNA with high selectivity and affinity at neutral pH. Continuing developments are directed towards improving TFO affinity at high pH and increasing triplex association kinetics. A number of applications of triplexes are currently being explored.  相似文献   

6.
The World Wide Web server of the PBIL (P?le Bioinformatique Lyonnais) provides on-line access to sequence databanks and to many tools of nucleic acid and protein sequence analyses. This server allows to query nucleotide sequence banks in the EMBL and GenBank formats and protein sequence banks in the SWISS-PROT and PIR formats. The query engine on which our data bank access is based is the ACNUC system. It allows the possibility to build complex queries to access functional zones of biological interest and to retrieve large sequence sets. Of special interest are the unique features provided by this system to query the data banks of gene families developed at the PBIL. The server also provides access to a wide range of sequence analysis methods: similarity search programs, multiple alignments, protein structure prediction and multivariate statistics. An originality of this server is the integration of these two aspects: sequence retrieval and sequence analysis. Indeed, thanks to the introduction of re-usable lists, it is possible to perform treatments on large sets of data. The PBIL server can be reached at: http://pbil.univ-lyon1.fr.  相似文献   

7.
A computer program, which runs on MS-DOS personal computers, is described that assists in the design of synthetic genes coding for proteins. The goal of the program is the design of a gene which (i) contains as many unique restriction sites as possible and (ii) uses a specific codon usage. The gene designed according to the criteria above is (i) suitable for 'modular mutagenesis' experiments and (ii) optimized for expression. The program 'reverse-translates' protein sequences into degenerated DNA sequences, generates a map of potential restriction sites and locates sequence positions where unique restriction sites can be accommodated. The nucleic acid sequence is then 'refined' according to a specific codon usage to remove any degeneration. Unique restriction sites, if potentially present, can be 'forced' into the degenerated nucleic acid sequence by using 'priority codes' assigned to different restriction sequences.  相似文献   

8.
Sequence similarity (‘Homology’) searching for molecular biologists   总被引:1,自引:0,他引:1  
Major types of sequence similarity searching (often, and incorrectly, called ‘homology’ searching) are reviewed and examples of each are presented. The features and limitations of each type of program, and individual implementations of each type are discussed. Two pairs of sequences are used as examples to show how implementations of each type differ in their results and their presentation. Both local and global alignment programs are examined, and the programs reviewed run on many different types of computer architectures, from laboratory computers such as the IBM PC, minicomputers such as the VAX, to large mainframe computers such as DEC-10/20 series.  相似文献   

9.
A flexible new computer program for handling DNA sequence data.   总被引:9,自引:2,他引:7       下载免费PDF全文
A compact new computer program for handling nucleic acid sequence data is presented. It consists of a number of different subsets, which may be used according to a given code system. The program is designed for the determination of restriction enzyme and other recognition sites in correlation with translation patterns, and allows tabulation of codon frequencies and protein molecular weights within specified gene boundaries. The program is especially designed for detection of overlapping genes. The language, is FORTRAN and thus the program may be used on small computers; it may also be used without any prior computer experience. Copies are available on request.  相似文献   

10.
Nucleic acid hybridization: from research tool to routine diagnostic method   总被引:2,自引:0,他引:2  
The nucleic acid hybridization reaction is extremely specific and thus a valuable tool for the identification of genes or organism of interest. The increasing use of nucleic acid hybridization in applied fields like diagnostic medicine has led to the development of more convenient hybridization assays than those originally used in basic research. In conventional nucleic acid hybridization methods immobilized nucleic acids are detected on a filter by a radiolabelled probe. Sandwich hybridization is a simple test format for the analysis of unpurified biological material, but has the disadvantage of a slow reaction rate. Solution hybridization methods are fast and easy to perform provided that a method to separate the formed hybrids from the reaction mixture is available. In non-isotopic detection the nucleic acid probe is modified with a chemical group, which is identified with a labelled detector molecule after hybridization. The low sensitivity of detection is the main problem in nucleic acid hybridization methods. Procedures to amplify the detectable signal or the amount of detectable nucleic acid sequences are potential solutions to this problem. The new hybridization methods have successfully been used for some applications, but still need to be combined into well performing tests to be applicable to any desired purpose.  相似文献   

11.
Biomolecular assays are continually being developed that use progressively smaller amounts of material, often precluding the use of conventional cuvette-based instruments for nucleic acid quantitation for those that can perform microvolume quantitation.The NanoDrop microvolume sample retention system (Thermo Scientific NanoDrop Products) functions by combining fiber optic technology and natural surface tension properties to capture and retain minute amounts of sample independent of traditional containment apparatus such as cuvettes or capillaries. Furthermore, the system employs shorter path lengths, which result in a broad range of nucleic acid concentration measurements, essentially eliminating the need to perform dilutions. Reducing the volume of sample required for spectroscopic analysis also facilitates the inclusion of additional quality control steps throughout many molecular workflows, increasing efficiency and ultimately leading to greater confidence in downstream results.The need for high-sensitivity fluorescent analysis of limited mass has also emerged with recent experimental advances. Using the same microvolume sample retention technology, fluorescent measurements may be performed with 2 μL of material, allowing fluorescent assays volume requirements to be significantly reduced. Such microreactions of 10 μL or less are now possible using a dedicated microvolume fluorospectrometer.Two microvolume nucleic acid quantitation protocols will be demonstrated that use integrated sample retention systems as practical alternatives to traditional cuvette-based protocols. First, a direct A260 absorbance method using a microvolume spectrophotometer is described. This is followed by a demonstration of a fluorescence-based method that enables reduced-volume fluorescence reactions with a microvolume fluorospectrometer. These novel techniques enable the assessment of nucleic acid concentrations ranging from 1 pg/ μL to 15,000 ng/ μL with minimal consumption of sample.  相似文献   

12.
Qβ replicase polymerizes MDV-1 RNA at a markedly variable rate. Electrophoretic analyses of partially synthesized strands showed that a few of the elongation intermediates are much more abundant than others, reflecting a variable rate of chain elongation. Our data suggest that at a relatively small number of specific sites in the sequence of this RNA, the progress of the replicase is temporarily interrupted, and then resumes spontaneously, with a finite probability. Since the time spent between these pause sites is negligible compared with the time spent at pause sites, the mean time of chain elongation is well approximated by the sum of the mean times spent at each pause site.Nucleotide sequence analysis of the most prominent elongation intermediates indicated that they all have the potential to form a 3′ terminal hairpin structure. This suggests that the marked variability in the rate of chain elongation is due to the formation of terminal hairpins in the product strand, or the reformation of hairpins in the template strand. A survey of the literature shows that this phenomenon occurs with most, if not all, nucleic acid polymerases. Structure-induced pauses may play a role in the regulation of nucleic acid synthesis.  相似文献   

13.
ABSTRACT: BACKGROUND: Gene prediction algorithms (or gene callers) are an essential tool for analyzing shotgun nucleic acid sequence data. Gene prediction is a ubiquitous step in sequence analysis pipelines; it reduces the volume of data by identifying the most likely reading frame for a fragment, permitting the out-of-frame translations to be ignored. In this study we evaluate five widely used ab initio gene-calling algorithms--FragGeneScan, MetaGeneAnnotator, MetaGeneMark, Orphelia, and Prodigal--for accuracy on short (75-1000 bp) fragments containing sequence error from previously published artificial data and "real" metagenomic datasets. RESULTS: While gene prediction tools have similar accuracies predicting genes on error-free fragments, in the presence of sequencing errors considerable differences between tools become evident. For error-containing short reads, FragGeneScan finds more prokaryotic coding regions than does MetaGeneAnnotator, MetaGeneMark, Orphelia, or Prodigal. This improved detection of genes in error-containing fragments, however, comes at the cost of much lower (50%) specificity and overprediction of genes in noncoding regions. CONCLUSIONS: Ab initio gene callers offer a significant reduction in the computational burden of annotating individual nucleic acid reads and are used in many metagenomic annotation systems. For predicting reading frames on raw reads, we find the hidden Markov model approach in FragGeneScan is more sensitive than other gene prediction tools, while Prodigal, MGA, and MGM are better suited for higher-quality sequences such as assembled contigs.  相似文献   

14.
DNA and a large proportion of RNA are antiparallel duplexes composed of an unvarying phosphosugar backbone surrounding uniformly stacked and highly similar base pairs. How do the myriad of enzymes (including ribozymes) that perform catalysis on nucleic acids achieve exquisite structure or sequence specificity? In all DNA and RNA polymerases and many nucleases and transposases, two Mg2+ ions are jointly coordinated by the nucleic acid substrate and catalytic residues of the enzyme. Based on the exquisite sensitivity of Mg2+ ions to the ligand geometry and electrostatic environment, we propose that two-metal-ion catalysis greatly enhances substrate recognition and catalytic specificity.  相似文献   

15.
16.

Background  

High quality sequence alignments of RNA and DNA sequences are an important prerequisite for the comparative analysis of genomic sequence data. Nucleic acid sequences, however, exhibit a much larger sequence heterogeneity compared to their encoded protein sequences due to the redundancy of the genetic code. It is desirable, therefore, to make use of the amino acid sequence when aligning coding nucleic acid sequences. In many cases, however, only a part of the sequence of interest is translated. On the other hand, overlapping reading frames may encode multiple alternative proteins, possibly with intermittent non-coding parts. Examples are, in particular, RNA virus genomes.  相似文献   

17.
Electrostatic effects are believed to determine the molecular structure and function of macromolecules in many ways. In metallo-based enzymes and in metal–macromolecule interactions in solution, these effects may predominate. In order to tackle metal ion–nucleic acid interactions theoretically, we propose a modification of Debye's distance-dependent dielectric function first proposed more than 50 years ago. This function more closely approximates physical reality at small interatomic separations. Our theory yields a dielectric function that gives reasonable agreement with experimental data in preliminary calculations.  相似文献   

18.
19.
Shajani Z  Varani G 《Biopolymers》2007,86(5-6):348-359
RNA and DNA molecules experience motions on a wide range of time scales, ranging from rapid localized motions to much slower collective motions of entire helical domains. The many functions of RNA in biology very often require this molecule to change its conformation in response to biological signals in the form of small molecules, proteins or other nucleic acids, whereas local motions in DNA may facilitate protein recognition and allow enzymes acting on DNA to access functional groups on the bases that would otherwise be buried in Watson-Crick base pairs. Although these statements make a compelling case to study the sequence dependent dynamics in nucleic acids, there are few residue-specific studies of nucleic acid dynamics. Fortunately, NMR studies of dynamics of nucleic acids and nucleic acids-protein complexes are gaining increased attention. The aim of this review is to provide an update of the recent progress in studies of nucleic acid dynamics by NMR based on the application of solution relaxation techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号