首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dlk1 and Gtl2 are reciprocally expressed imprinted genes located on mouse chromosome 12. The Dlk1-Gtl2 locus carries three differentially methylated regions (DMRs), which are methylated only on the paternal allele. Of these, the intergenic (IG) DMR, located 12 kb upstream of Gtl2, is required for proper imprinting of linked genes on the maternal chromosome, while the Gtl2 DMR, located across the promoter of the Gtl2 gene, is implicated in imprinting on both parental chromosomes. In addition to DNA methylation, modification of histone proteins is also an important regulator of imprinted gene expression. Chromatin immunoprecipitation was therefore used to examine the pattern of histone modifications across the IG and Gtl2 DMRs. The data show maternal-specific histone acetylation at the Gtl2 DMR, but not at the IG DMR. In contrast, only low levels of histone methylation were observed throughout the region, and there was no difference between the two parental alleles. An existing mouse line carrying a deletion/insertion upstream of Gtl2 is unable to imprint the Dlk1-Gtl2 locus properly and demonstrates loss of allele-specific methylation at the Gtl2 DMR. Further analysis of these animals now shows that the loss of allele-specific methylation is accompanied by increased paternal histone acetylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern. These data indicate that interactions between DNA methylation and histone acetylation are involved in regulating the imprinting of the Dlk1-Gtl2 locus.  相似文献   

2.
3.
The H19 gene is imprinted with preferential expression from the maternal allele. The putative imprinting control region for this locus is hypermethylated on the repressed paternal allele. Although maternal-specific expression of H19 is observed in mouse blastocysts that develop in vivo, biallelic expression has been documented in embryos and embryonic stem cells experimentally manipulated by in vitro culture conditions. In this study the effect of culture on imprinted H19 expression and methylation was determined. After culture of 2-cell embryos to the blastocyst stage in Whitten's medium, the normally silent paternal H19 allele was aberrantly expressed, whereas little paternal expression was observed following culture in KSOM containing amino acids (KSOM+AA). Analysis of the methylation status of a CpG dinucleotide located in the upstream imprinting control region revealed a loss in methylation in embryos cultured in Whitten's medium but not in embryos cultured in KSOM+AA. Thus, H19 expression and methylation were adversely affected by culture in Whitten's medium, while the response of H19 to culture in KSOM+AA approximated more closely the in vivo situation. It is unlikely that biallelic expression of H19 following culture in Whitten's medium is a generalized effect of lower methylation levels, since the amount of DNA methyltransferase activity and the spatial distribution of Dnmt1 protein were similar in in vivo-derived and cultured embryos. Moreover, imprinted expression of Snrpn was maintained following culture in either medium, indicating that not all imprinted genes are under the same stringent imprinting controls. The finding that culture conditions can dramatically, but selectively, affect the expression of imprinted genes provides a model system for further study of the linkage between DNA methylation and gene expression.  相似文献   

4.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

5.
6.
Genomic imprinting is regulated by differential methylation of the paternal and maternal genome. However, it remains unknown how parental imprinting is established during gametogenesis. In this study, we demonstrate that Dnmt3L, a protein sharing homology with DNA methyltransferases, Dnmt3a and Dnmt3b, but lacking enzymatic activity, is essential for the establishment of maternal methylation imprints and appropriate expression of maternally imprinted genes. We also show that Dnmt3L interacts with Dnmt3a and Dnmt3b and co-localizes with these enzymes in the nuclei of transfected cells, suggesting that Dnmt3L may regulate genomic imprinting via the Dnmt3 family enzymes. Consistent with this model, we show that [Dnmt3a(-/-), Dnmt3b(+/-)] mice also fail to establish maternal methylation imprints. In addition, both Dnmt3a and Dnmt3L are required for spermatogenesis. Together, our findings suggest that Dnmt3L may cooperate with Dnmt3 family methyltransferases to carry out de novo methylation of maternally imprinted genes in oocytes.  相似文献   

7.
8.
Genomic imprinting, an epigenetic form of gene regulation, determines the parent-dependent gene expression of marked or imprinted genes during gametogenesis and embryonic development. Imprinting involves differential allele DNA methylation in one sex cell lineage but not in the other. Egg and sperm each contributes the same DNA sequences to the zygote but epigenetic imprinting of a subset of genes determines that only one of the parent alleles are expressed relative to the parental origin. Primordial germ cells inherit biallelically imprinted genes from maternal and paternal origin and erase their imprints to start de novo monoallelic imprinting during gametogenesis. Epigenetic paternalization is an ongoing process in the mitotically-dividing spermatogonial stem cell and derived meiotically-dividing spermatocyte progeny to endow sperm with imprinted alleles. Epigenetic maternalization is restricted to the oocyte growth phase of folliculogenesis and is unrelated to DNA replication since it takes place while the oocyte remains in the diplotene stage of meiotic prophase I. Sperm and oocyte genomic methylation patterns depend on the activity of DNA methyltransferases (Dnmt). A variant of Dnmt1, designated Dnmt1o, accumulates in oocyte nuclei during the follicular growth phase. Dnmt3L, an isoform of Dnmt3a and Dnmt3b, but lacking enzymatic activity, interacts with Dnmt2a and Dnmt3b and is required for spermatogenesis. In the mouse early zygote, the male pronucleus is demethylated within 4 h of fertilization. Global demethylation takes place gradually up to the morula stage. In the blastocyst, de novo methylation is reestablished in the inner cell mass but not in the trophectoderm. Both the significance of genomic imprinting and the severe developmental defects caused by disrupted Dnmt activity, point to a need for a better understanding of the causes of low cloning efficiency by somatic nuclear transfer to enucleated ovulated oocyte.  相似文献   

9.
10.
The H19 imprinted gene locus is regulated by an upstream 2 kb imprinting control region (ICR) that influences allele-specific expression, DNA methylation, and replication timing. This ICR becomes de novo methylated during late spermatogenesis in the male but emerges from oogenesis in an unmethylated form, and this allele-specific pattern is then maintained throughout early development and in all tissues of the mouse. We have used a genetic approach involving transfection into embryonic stem (ES) cells in order to decipher how the maternal allele is protected from de novo methylation at the time of implantation. Our studies show that CCCTC binding factor (CTCF) boundary elements within the ICR have the ability to prevent de novo methylation on the maternal allele. Since CTCF does not recognize its binding sequence when methylated, this reaction does not occur on the paternal allele, thus preserving the gamete-derived, allele-specific pattern. These results suggest that CTCF may play a general role in the maintenance of differential methylation patterns in vivo.  相似文献   

11.
Gametic marks are stably propagated in order to manifest parent of origin-specific expression patterns of imprinted genes in the developing conceptus. Although the character of the imprint has not yet been fully elucidated, there is compelling evidence that it involves a methylation mark. This is exemplified by a region upstream of the H19 gene, which is not only methylated in a parent of origin-specific manner, but also regulates the silencing of the maternal Igf2 and paternal H19 alleles, respectively. We show here that the parental-specific methylation patterns within the differentially methylated domain (DMD) are perturbed in the soma during in vitro organogenesis. Under these conditions, the paternal DMD allele becomes partially demethylated, whereas the maternal DMD allele gains methylation. Despite these effects, there were no changes in allelic Igf2 or H19 expression patterns in the embryo. Finally, we show that although TSA derepresses the paternal H19 allele in ectoplacental cone when in vitro developed, there is no discernible effect on the methylation status of the paternally inherited 5'-flank in comparison to control samples. Collectively, this data demonstrates that the parental mark is sensitive to a subset of environmental cues and that a certain degree of plasticity of the gametic mark is tolerated without affecting the manifestation of the imprinted state.  相似文献   

12.
13.
Landmark features of imprinted genes are differentially methylated domains (DMDs), in which one parental allele is methylated on CpG dinucleotides and the opposite allele is unmethylated. Genetic experiments in the mouse have shown that DMDs are required for the parent-specific expression of linked clusters of imprinted genes. To understand the mechanism whereby the differential methylation is established and maintained, we analyzed a series of transgenes containing DMD sequences and showed that imperfect tandem repeats from DMDs associated with the Snurf/Snrpn, Kcnq1, and Igf2r gene clusters govern transgene imprinting. For the Igf2r DMD the minimal imprinting signal is two unit copies of the tandem repeat. This imprinted transgene behaves identically to endogenous imprinted genes in Dnmt1o and Dnmt3L mutant mouse backgrounds. The primary function of the imprinting signal within the transgene DMD is to maintain, during embryogenesis and a critical period of genomic reprogramming, parent-specific DNA methylation states established in the germ line. This work advances our understanding of the imprinting mechanism by defining a genomic signal that dependably perpetuates an epigenetic state during postzygotic development.  相似文献   

14.
BackgroundSelective maintenance of genomic epigenetic imprints during pre-implantation development is required for parental origin-specific expression of imprinted genes. The Kruppel-like zinc finger protein ZFP57 acts as a factor necessary for maintaining the DNA methylation memory at multiple imprinting control regions in early mouse embryos and embryonic stem (ES) cells. Maternal-zygotic deletion of ZFP57 in mice presents a highly penetrant phenotype with no animals surviving to birth. Additionally, several cases of human transient neonatal diabetes are associated with somatic mutations in the ZFP57 coding sequence.ResultsHere, we comprehensively map sequence-specific ZFP57 binding sites in an allele-specific manner using hybrid ES cell lines from reciprocal crosses between C57BL/6J and Cast/EiJ mice, assigning allele specificity to approximately two-thirds of all binding sites. While half of these are biallelic and include endogenous retrovirus (ERV) targets, the rest show monoallelic binding based either on parental origin or on genetic background of the allele. Parental-origin allele-specific binding is methylation-dependent and maps only to imprinting control differentially methylated regions (DMRs) established in the germline. We identify a novel imprinted gene, Fkbp6, which has a critical function in mouse male germ cell development. Genetic background-specific sequence differences also influence ZFP57 binding, as genetic variation that disrupts the consensus binding motif and its methylation is often associated with monoallelic expression of neighboring genes.ConclusionsThe work described here uncovers further roles for ZFP57-mediated regulation of genomic imprinting and identifies a novel mechanism for genetically determined monoallelic gene expression.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0672-7) contains supplementary material, which is available to authorized users.  相似文献   

15.
The imprinted Igf2 gene is active only on the paternal allele in most tissues. Its imprinting involves a cis-acting imprinting-control region (ICR) located upstream of the neighboring and maternally expressed H19 gene. It is thought that differential methylation of the parental alleles at the ICR is crucial for parental imprinting of both genes. Differentially methylated regions (DMRs) have also been identified within the Igf2 gene and their differential methylation is thought to be established during early development. To gain further insight into the function of these DMRs, we performed a quantitative analysis of their allelic methylation levels in different tissues during fetal development and the postnatal period in the mouse. Surprisingly, we found that the methylation levels of Igf2 DMRs vary extensively during fetal development, mostly on the expressed paternal allele. In particular, in skeletal muscle, differential allelic methylation in both DMR 1 and DMR 2 occurs only after birth, whereas correct paternal monoallelic expression is always observed, including in the embryonic stages. This suggests that differential methylation in the DMR 1 and DMR 2 of the Igf2 gene is dispensable for its imprinting in skeletal muscle. Furthermore, progressive methylation of the Igf2 paternal allele appears to be correlated with concomitant postnatal down-regulation and silencing of the gene. We discuss possible relations between Igf2 allelic methylation and expression during fetal development.  相似文献   

16.
17.
Genomic imprinting at the Igf2/H19 locus originates from allele-specific DNA methylation, which modifies the affinity of some proteins for their target sequences. Here, we show that AT-rich DNA sequences located in the vicinity of previously characterized differentially methylated regions (DMRs) of the imprinted Igf2 gene are conserved between mouse and human. These sequences have all the characteristics of matrix attachment regions (MARs), which are known as versatile regulatory elements involved in chromatin structure and gene expression. Combining allele-specific nuclear matrix binding assays and real-time PCR quantification, we show that retention of two of these Igf2 MARs (MAR0 and MAR2) in the nuclear matrix fraction depends on the tissue and is specific to the paternal allele. Furthermore, on this allele, the Igf2 MAR2 is functionally linked to the neighboring DMR2 while, on the maternal allele, it is controlled by the imprinting-control region. Our work clearly demonstrates that genomic imprinting controls matrix attachment regions in the Igf2 gene.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号