首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously a mathematical model was proposed that quantitatively related protein synthesis inhibition kinetics of antitransferrin receptor-gelonin immunotoxins to the cellular trafficking of the targeting agent. That work is here extended to describe protein synthesis inhibition kinetics of immunotoxins containing the diphtheria toxin mutant CRM107. CRM107 differs from gelonin in both translocation and ribosomal inactivation mechanisms. Targeting agents used were antitransferrin monoclonal antibodies 5E9 and OKT9, OKT9Fab, and transferrin. CRM107 conjugates inhibited protein synthesis at substantially lower concentrations than gelonin conjugates; this effect was attributed to substantially higher translocation rates for CRM107. However, under certain conditions, CRM107 immunotoxin-treated cells were able to recover completely; this behavior was never observed with gelonin immunotoxins. To quantitatively capture this phenomenon, extracellular and cytosolic degradation of the toxin as well as growth-related recovery from toxin-induced damage were incorporated into the mathematical model. Translocation and cytosolic degradation rate constants were determined for each immunotoxin. Unlike the gelonin conjugates, the translocation rate of CRM107 conjugates depended on the targeting molecule. This provided indirect evidence that CRM107 remains disulfide linked to the targeting agent for at least part of the translocation process. Although the CRM107 conjugates all had higher translocation rates and inhibited protein synthesis at lower concentrations than the gelonin conjugates, the cells' ability to recover from protein synthesis inhibition at low immunotoxin concentrations limits the utility of CRM107 conjugates for targeted cell killing.  相似文献   

2.
The role of the diphtheria toxin receptor in cytosol translocation   总被引:6,自引:0,他引:6  
The role of the receptor in the transport of diphtheria toxin (DT) to the cytosol was examined. A point-mutant form of DT, CRM 107 (CRM represents cross-reacting material), that has an 8,000-fold lower affinity for the DT receptor than native toxin was conjugated to transferrin and monoclonal antibodies specific for the cell-surface receptors T3 and Thy1. Conjugating the binding site-inactivated CRM 107 to new binding moieties reconstituted full toxicity, indistinguishable from native DT linked to the same ligand, indicating that the entry activity of the DT B chain can be fully separated from the receptor binding function. Like DT, the toxin conjugates exhibited a dose-dependent lag period before first-order inactivation of protein synthesis. Inactivation of the binding site of the toxin portion of the conjugate was found to have no effect on the kinetics of protein synthesis inactivation. The receptor used by the toxin determined the length of the lag period relative to the killing rate. Comparing the potency of CRM 107 conjugates with native DT, standardized for receptor occupancy, shows that new receptors can be as or more efficient than the DT receptor in transporting DT to the cytosol. The transferrin-CRM 107 conjugate, unlike native DT, was highly toxic to murine cells. All the data presented are consistent with a model that the DT receptor, other than initiating rapid internalization of the toxin to low pH compartments, is unnecessary for transport of the toxin to the cytosol and that membrane translocation activity is expressed by the DT B subunit independent of the receptor-binding site.  相似文献   

3.
Immunotoxins have the potential to be powerful tools for selective cell killing, but their lack of clinical success against solid tumors indicates a need to better understand factors which limit immunotoxin transport in three-dimensional systems. In this work, a previously developed model which related immunotoxin toxicity to cellular trafficking in a single cell was coupled with a term accounting for diffusive transport of immunotoxin in a solid tumor sphere. This created a mathematical model which is capable of simulating the biological response of multicell tumor spheroids (MTS) to immunotoxin treatment. The model was used to predict the kinetics of protein synthesis inhibition in MTS treated with transferrin receptor-targeted immunotoxins as a function of immunotoxin concentration and toxin choice. HeLa cells were grown as MTS and treated with immunotoxins constructed from the anti-transferrin receptor antibody OKT9 and the toxins gelonin or CRM107, and the average protein synthesis inhibition and growth rates were measured. With no fitted parameters, the mathematical model quantitatively predicted the experimental observations. Immunotoxins were generally less effective against MTS than monolayer cells at equivalent conditions; for OKT9-gelonin at high concentrations this decrease in efficacy was attributed primarily to heterogeneous receptor distribution in MTS whereas for OKT9-CRM107 the decrease was caused primarily by a large barrier to penetration of the immunotoxin into the spheroid. The experimentally verified model was used to define the conditions which lead to large penetration barriers. In general, transport barriers in MTS become more important as immunotoxins become more effective against cells grown as monolayers. The proposed model is unique in its ability to predict toxicity in MTS directly, and is an important step toward understanding immunotoxin effect on tumors in vivo.  相似文献   

4.
Recently, a bivalent recombinant anti-human CD3 diphtheria toxin (DT) based immunotoxin derived from the scFv of UCHT1 antibody has been made that shows enhanced bioactivity and is free from the side effects of Fc receptor interaction. In this case, the diminution of CD3 binding due to the placement of the scFv domain at the C-terminus of the truncated DT in single scFv immunotoxins was compensated by adding an additional scFv domain. However, this strategy was less successful for constructing an anti-rhesus recombinant immunotoxin derived from the scFv of FN18 antibody due to poor binding of the anti-rhesus bivalent immunotoxin. We report here that, by increasing the FN18 scFv affinity through random mutagenesis and selection with a dye-labeled monkey CD3epsilongamma recombinant heterodimer, we greatly improved the bioactivity of FN18 derived immunotoxin. The best mutant, C207, contained nine mutations, two of which were located in CDRs that changed the charge from negative to positive. Binding affinity of the C207 scFv to the monkey T cell line HSC-F increased 9.8-fold. The potency of the C207 bivalent immunotoxin assayed by inhibition of protein synthesis increased by 238-fold.  相似文献   

5.
Immunotoxins comprised of a monoclonal antibody covalently coupled to recombinant ricin A chain or to a binding-defective form of diphtheria toxin were compared with respect to their rates of protein synthesis inhibition and efficiencies of killing target cells. Protein synthesis inhibition rates were established by measuring the incorporation of L-[14C]leucine in toxin-treated cells relative to untreated cells at several times after exposure of cells to an immunotoxin. Cell killing was assessed by a limiting dilution assay which measures the number of cells surviving toxin treatment relative to untreated cells. At equivalent protein concentrations, the diphtheria toxin immunotoxin inhibited protein synthesis significantly more rapidly than the ricin A immunotoxin but, contrary to previous predictions, achieved a significantly lower cell kill. Thus, the kinetics of protein synthesis inactivation do not necessarily correlate with killing efficiencies. Possible explanations for these results are that the effect of the diphtheria toxin immunotoxin on protein synthesis is partially reversible or that the diphtheria toxin immunotoxin enters the cytosol at a faster rate than the ricin A immunotoxin but also is degraded at a faster rate.  相似文献   

6.
Anti-CD3 immunotoxins exhibit considerable promise for the induction of transplantation tolerance in pre-clinical large animal models. Recently an anti-human anti-CD3epsilon single-chain immunotoxin based on truncated diphtheria toxin has been described that can be expressed in CHO cells that have been mutated to diphtheria toxin resistance. After the two toxin glycosylation sites were removed, the bioactivity of the expressed immunotoxin was nearly equal to that of the chemically conjugated immunotoxin. This immunotoxin, A-dmDT390-sFv, contains diphtheria toxin to residue 390 at the N-terminus followed by VL and VH domains of antibody UCHT1 linked by a (G(4)S)(3) spacer (sFv). Surprisingly, we now report that this immunotoxin is severely compromised in its binding affinity toward CD3(+) cells as compared with the intact parental UCHT1 antibody, the UCHT1 Fab fragment or the engineered UCHT1 sFv domain alone. Binding was increased 7-fold by adding an additional identical sFv domain to the immunotoxin generating a divalent construct, A-dmDT390-bisFv (G(4)S). In vitro potency increased 10-fold over the chemically conjugated immunotoxin, UCHT1-CRM9 and the monovalent A-dmDT390-sFv. The in vivo potency of the genetically engineered immunotoxins was assayed in the transgenic heterozygote mouse, tgepsilon 600, in which the T-cells express human CD3epsilon as well as murine CD3epsilon. T-cell depletion in the spleen and lymph node observed with the divalent construct was increased 9- and 34-fold, respectively, compared with the monovalent construct. The additional sFv domain appears partially to compensate for steric hindrance of immunotoxin binding due to the large N-terminal toxin domain.  相似文献   

7.
Diphtheria toxin (DT) is a soluble protein that translocates across hydrophobic lipid bilayers in response to low pH. The translocation activity of DT has been localized to the 40-kDa toxin B chain and can be expressed independently of the C-terminal receptor binding site. Buried hydrophobic domains in DT are thought to participate in the membrane translocation process. We have identified a mutant form of DT, CRM 102, that has a point mutation at position 308 (Pro----Ser) within one of these hydrophobic domains. CRM 102 conjugated to a monoclonal antibody against the T cell receptor, the transferrin receptor, or transferrin itself is approximately 10-fold less toxic than native DT or a control DT mutant, CRM 103, linked to the same binding moieties. Direct measurement of membrane translocation activity by exposure of cells to low extracellular pH demonstrates that CRM 102 conjugates express only 10% of the translocation activity of the control toxin conjugates. However, when CRM 102 or 102 conjugates bind and kill cells via the DT receptor, no reduction in membrane translocation activity is observed. The defect in CRM 102 is not evident in the presence of 20 mM NH4Cl. The defect in translocation also has no effect on the ratio of the lag time before protein synthesis inhibition begins to the rate of protein synthesis inhibition. Thus, the proline-serine substitution at position 308 disrupts the membrane translocation process and distinguishes between two routes of DT entry: DT receptor-mediated entry and entry mediated by alternate receptors.  相似文献   

8.
Anti-CD3 immunotoxins, which induce profound but transient T-cell depletion in vivo by inhibiting eukaryotic protein synthesis in CD3+ cells, are effective reagents in large animal models of transplantation tolerance and autoimmune disease therapy. A diphtheria toxin based antiporcine CD3 recombinant immunotoxin was constructed by fusing the truncated diphtheria toxin DT390 with two identical tandem single chain variable fragments (scFv) derived from the antiporcine CD3 monoclonal antibody 898H2-6-15. The recombinant immunotoxin was expressed in a diphtheria-toxin resistant yeast Pichia pastoris strain under the control of the alcohol oxidase promoter. The secreted recombinant immunotoxin was purified sequentially with hydrophobic interaction chromatography (Butyl 650 M) followed by strong anion exchange (Poros 50 HQ). The purified antiporcine CD3 immunotoxin was tested in vivo in four animals; peripheral blood CD3+ T-cell numbers were reduced by 80% and lymph node T-cells decreased from 74% CD3+ cells pretreatment to 24% CD3+ cells remaining in the lymph node following 4 days of immunotoxin treatment. No clinical toxicity was observed in any of the experimental swine. We anticipate that this conjugate will provide an important tool for in vivo depletion of T-cells in swine transplantation models.  相似文献   

9.
Quantal entry of diphtheria toxin to the cytosol   总被引:2,自引:0,他引:2  
The rate-limiting step in diphtheria toxin (DT) intoxication of Vero cells has been determined utilizing cycloheximide as an inhibitor of the intoxication process. Cycloheximide is shown to inhibit the toxin catalyzed ADP-ribosylation of elongation factor 2 (EF-2). The inhibition is blocked by puromycin thus establishing the ribosome as the location of cycloheximide protection. Washing cells free of cycloheximide rapidly reverses the protective effect. The initial rates of protein synthesis inhibition observed after removal of cycloheximide from DT-intoxicated cells are 5 to 12-fold greater than rates observed in unprotected cells and are shown to reflect ADP-ribosylation of EF-2 by cytosolic DT. Ten to thirty minutes after cycloheximide removal, the rate of protein synthesis inhibition abruptly changes to values identical to those of unprotected cells. Both the initial rates and extent of the initial rapid inactivation are directly related to toxin concentration and time of incubation with DT in the presence of cycloheximide. We concluded that: the rate-limiting step in protein synthesis inhibition by DT is not the ADP-ribosylation of EF-2 by cytosolic toxin but rather the earlier entry step of DT into the cytosol. DT enters the cytosol as a bolus of sufficient size to rapidly inactivate all EF-2 in that cell. It is inferred from 1 and 2 that the first order inactivation rate exhibited by DT is the result of the probability of the release of a bolus of toxin to the cytosol of any cell in the population per unit time. Autoradiographic analysis of intoxicated cell populations support this two-population state model. The size of a single bolus or quantum of DT is calculated from data over the range of 10(-11) to 10(-9) M DT and is found to remain constant. We suggest that the cytosolic entry mechanism of DT results from a unique ability of the internalized toxin molecules to destabilize the vesicular membrane resulting in a random release of a bolus of toxin into the cytosol. Because the bolus size remains constant over a 50-fold change in receptor occupancy the possibility is raised that DT undergoes a post-receptor packaging process, package size remaining a constant and package number increasing with receptor occupancy.  相似文献   

10.
Monoclonal antibodies (Mab) were raised against CRM197, a non-toxic mutant of diphtheria toxin (DT). The ability of four Mabs to bind DT and the six functional mutants CRM197, CRM176, CRM228, CRM1001, CRM45 and CRM30 was assessed by immunoblotting and by a radioimmunoassay in which the protein antigen in solution competes with labeled CRM197 for the Mab binding site. The results show that the peptides recognized by Mab11.3, Mab53 and Mab23 are accessible in the mutant molecules in solution but not when they are part of the native DT structure, which could therefore be described for this purpose as 'closed' in contrast with an 'open' conformation of CRM197, CRM176 and CRM228. In particular, the behaviour of Mab53 indicates that the single amino acid substitutions in the A fragments of CRM197 and CRM176 also affect the conformation of their B fragments.  相似文献   

11.
ADP-ribosylating immunotoxins are generally expressed in Escherichia coli and then refolded in vitro. Because the efficiency of the in vitro refolding process decreases with the number of protein domains and internal disulfide bonds, these immunotoxins have been generally limited to single-chain monovalent structures. We now show that using the hamster cell line CHO K1 RE1.22c (J. M. Moehring and T. J. Moehring, 1979, Somat. Cell Genet. 5, 453-468) that has been mutated to ADP-ribosylation insensitivity, a level of 4 microg/ml of a truncated anti-T cell immunotoxin, DT390-scFvUCHT1, can be secreted into the medium. This immunotoxin is glycosylated at the two potential N-linked glycosylation sites in the toxin moiety: positions 16-18 in the A chain and residues 235-237 in the B chain. The glycosylated immunotoxin is relatively nontoxic (IC(50) 4.8 x 10(-10) M). Removal of the N-linked oligosaccharides by N-glycosidase F treatment or mutations at the two N-linked glycosylation sites results in a highly active immunotoxin with an IC(50) of 4 x 10(-12) M toward CD3(+) Jurkat cells. This is a 12-fold increase in toxicity over the same immunotoxin harvested from E. coli periplasm without refolding. A single Asn(235) Ala mutation that removed the B chain glycosylation was nearly as toxic as the double mutant. This suggests that B chain glycosylation is the major cause for the loss of toxicity.  相似文献   

12.
We previously developed a method termed "toxin receptor-mediated cell knockout" (TRECK). By the TRECK method, a single or repeated shot(s) of diphtheria toxin (DT) conditionally ablates a specific cell population from transgenic mice expressing the DT receptor transgene under the control of a cell type-specific promoter. In some cases of TRECK, frequent and high-dose administration of DT is required, raising the concern that these frequent injections of DT could cause production of anti-DT antibody, which would neutralize further DT administration. To solve this problem, we aimed to generate transgenic mice genetically expressing a nontoxic DT mutant, with the expectation that they may naturally acquire immune tolerance to DT. Unexpectedly, the G52E DT mutant, which is well known as the nontoxic DT variant cross reacting material 197 (CRM197), exhibited cytotoxicity in yeast and mammalian cells. Cytotoxicity of CRM197 was abrogated in cells mutated for elongation factor 2 (EF-2), indicating that CRM197 exerts its toxic effects through EF-2, similar to wild-type DT. On the other hand, the K51E/E148K DT mutant exhibited no detectable cytotoxicity. This led us to successfully obtain DT gene transgenic mice, which exhibited no histological abnormalities, and indeed acquired immune tolerance to DT.  相似文献   

13.
Treatment of normal mice with a mAb to CD4 (GK1.5) was explored as a means of inhibiting the antibody response to an immunotoxin. Three days of pretreatment with 200 micrograms of GK1.5 completely abrogated the primary antibody response to a 3-micrograms dose of a mutant diphtheria toxin conjugated to an anti-transferrin receptor antibody. The same dose and schedule of anti-CD4 antibody significantly reduced and delayed, but did not prevent, the anamnestic antitoxin response in animals that had been previously primed to the immunotoxin. Three daily injections of anti-CD4 antibodies followed by weekly doses of immunotoxin resulted in a 3-wk delay in the development of antitoxin antibodies, and the kinetics of the antitoxin response correlated with the kinetics of recovery of CD4+ T cells in the spleen and lymph nodes. The antitoxin response to repeated doses of immunotoxin was completely abrogated when anti-CD4 antibodies were given every 2 wk throughout the course of immunotoxin treatment. Thus, transient depletion of Th cells during treatment can block the immune response to an immunotoxin. There was no evidence of tolerance induction with this regimen.  相似文献   

14.
Two substances possessing the ability to bind to diphtheria toxin (DT) were found to be present in a membrane fraction from DT-sensitive Vero cells. One of these substances was found on the basis of its ability to bind DT and inhibit its cytotoxic effect. This inhibitory substance competitively inhibited the binding of DT to Vero cells. However this inhibitor could not bind to CRM197, the product of a missense mutation in the DT gene, and did not inhibit the binding of CRM197 to Vero cells. Moreover, similar levels of the inhibitory activity were observed in membrane fractions from DT-insensitive mouse cells, suggesting the inhibitor is not the DT receptor which is specifically present in DT-sensitive cells. The second DT-binding substance was found in the same Vero cell membrane preparation by assaying the binding of 125I-labeled CRM197. Such DT-binding activity could not be observed in membrane preparation from mouse L cells. From competition studies using labeled DT and CRM proteins, we conclude that this binding activity is due to the surface receptor for DT. Treatment of these substances with several enzymes revealed that the inhibitor was sensitive to certain RNases but resistant to proteases, whereas the DT receptor was resistant to RNase but sensitive to proteases. The receptor was solubilized and partially purified by chromatography on CM-Sepharose column. Immunoprecipitation and Western blotting analysis of the partially purified receptor revealed that a 14.5-kD protein is the DT receptor, or at least a component of it.  相似文献   

15.
Jia J  Li H  Tai S  Lv M  Liao M  Yang Z  Zhang B  Zhou B  Zhang G  Zhang L 《DNA and cell biology》2008,27(5):279-285
Experimental autoimmune encephalomyelitis (EAE) is a neuropathological animal model for multiple sclerosis. Antigen-presenting cells (APCs) expressing interleukin-18 receptor (IL-18R) were shown to be crucial in the beginning and progress of EAE. In this study we tested the effect of a novel recombinant immunotoxin targeting IL-18R-bearing APC for EAE prevention. The novel eukaryotic plasmid DT390-IL-18-SRalpha, encoding recombinant immunotoxin DT390-IL-18, was constructed. The immunotoxin consisted of IL-18 as the targeting moiety, and a truncated diphtheria toxin (DT) as the toxic moiety. Transfection assay and proliferation inhibition assay proved the immunotoxin could be expressed in vitro and was toxic to the activated mouse T cells. To evaluate the preventive effect of DT390-IL-18-SRalpha on EAE in vivo, cationic liposome-embedded DT390-IL-18-SRalpha was injected into the hind limbs of EAE mice. DT390-IL-18-SRalpha-treated mice showed a delayed manifestation of EAE and decreased symptoms compared to the mice treated with plasmid DT390-SRalpha or phosphate-buffered saline alone. A significant reduction in infiltrating inflammatory cells was detected in the brain tissues from immunotoxin-treated mice as compared with the controls by hematoxylin-eosin staining. This study suggested that the recombinant immunotoxin DT390-IL-18 could be expressed in vitro and in vivo, and prevented murine EAE effectively.  相似文献   

16.
It has been previously reported from this laboratory that incubation of PBMC with OKT3 generates potent cytotoxic lymphocytes that can be targeted by using antibody heteroconjugates consisting of anti-target cell antibody and OKT3. In the present study these conjugates were used to explore the kinetics of induction of cytotoxicity in PBMC and the subpopulations of lymphocytes involved. It was found that in addition to conjugate-dependent cytotoxicity, a considerable amount of conjugate-independent cytotoxicity was generated during OKT3 stimulation. Although the conjugate-dependent activity resided in the CD8+ population, the conjugate-independent cytotoxicity was found to be a function of CD4-/CD8- natural killer-like cells. Being largely CD3-, those cells were most likely activated by lymphokines produced by OKT3-stimulated CD3+ cells. They were capable of killing not only tumor cells but also autologous lymphocytes. The CD4+ cells of some donors were found to exhibit low but clearly demonstrable cytotoxicity. Induction of cytotoxicity was characterized as an early event in T cell activation, correlating with the kinetics of RNA synthesis. Cytotoxicity, interleukin 2 receptor expression, and DNA synthesis declined after 3 days of activation with OKT3, indicating the existence of as yet undefined regulatory mechanisms.  相似文献   

17.
CRM197, a mutated diphtheria toxin (DT), has long been recognized to be a non-toxic protein. Based on its non-toxic feature, this protein has been utilized for various purposes, including as an inhibitor of heparin-binding EGF-like growth factor (HB-EGF) and as an immunological adjuvant for vaccination. Here we show evidence that CRM197 has a weak toxicity. This toxicity was observed in cells over-expressing the DT receptor/proHB-EGF, but not in parental cells, indicating that the toxicity was mediated through DT receptor. CRM197 did not show any toxicity toward DT-resistant cells, which have a mutation in elongation factor 2, and a cell-free assay revealed the existence of weak EF-2-ADP ribosylation activity in fragment A of CRM197. Thus, the present study indicates a requirement for specific care in the use of CRM197 at a high dosage, although the toxicity of CRM197 is about 10(6) times less than that of wild-type DT. We found that a monoclonal antibody to DT inhibited CRM197 toxicity, but did not affect the inhibitory activity of CRM197 toward HB-EGF-induced mitogenic activity. CRM197 strongly inhibits tumour growth in nude mice. The anti-DT monoclonal antibody administered with CRM197 reduced the anti- tumourigenic effect of CRM197, indicating that the toxicity of CRM197 potentiates its anti- tumourigenic effect.  相似文献   

18.
19.
We isolated and treated in vitro with a novel CD5-specific saporin immunotoxin, referred to as OKT1-SAP, the cells infiltrating an irreversibly rejected renal allograft from a patient who rejected while on cyclosporine plus steroids and then failed to respond to multiple courses of high-dose steroids, intravenous OKT3 antibody, and local irradiation to the graft. We report here that under experimental conditions achievable in vivo the immunotoxin OKT1-SAP was capable of eliminating in vitro more than 95% of clonable T-lymphocytes infiltrating the rejected allograft of this patient despite their resistance to previous aggressive immunosuppression. To our knowledge, this is the first report of an immunotoxin-mediated suppression of the clonogenic growth of rejected renal allograft infiltrating T-lymphocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号