首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratinocyte migration during epidermal repair depends on interactions between cellular heparan sulfate proteoglycan receptors, syndecan-1 and -4, and the C-terminal globular domains (LG45) of the extracellular matrix protein laminin 332. This study investigates the molecular basis of the binding specificity of the syndecan-1 and -4 receptors expressed by human keratinocytes. We used site-directed mutagenesis to alter a recombinant LG45 protein by substituting the most critical basic residues with glutamine. All proteins were expressed in mammalian cells, purified, and characterized biochemically. We used in vitro binding assays, including surface plasmon resonance, to examine interactions between mutated LG45 and heparan sulfates, syndecan-1 and -4. We identify a major heparin binding domain on the outer edge of a β-strand of LG45 surrounded by a track of converging low affinity residues. This domain harbors distinctive syndecan-1 and -4 binding-specific sequences. This is the first study to demonstrate a binding specificity of two proteoglycans produced by a single cell type. In addition, we found that although syndecan-1 interacts exclusively through its glycosaminoglycan chains, syndecan-4 binding relies on both its core protein and its heparan sulfate chains. These results suggest that LG45 may trigger different signals toward keratinocytes depending on its interaction with syndecan-1 or -4.  相似文献   

2.
The syndecans, a family of transmembrane heparan sulfate proteoglycans, are ubiquitous molecules whose intracellular function is still unknown. To examine the function of syndecan-2, one of the most abundant heparan sulfate proteoglycan in fibroblasts, we performed transfection studies in COS-1 and Swiss 3T3 cells. Endogenous syndecan-2 colocalized with F-actin in cortical structures. Overexpression of full-length syndecan-2 induced the formation of long filopodia-like structures. These changes correlated with a rearrangement of the actin cytoskeleton, which strongly colocalized with syndecan-2. Overexpression of syndecan-2 lacking the extracellular domain increased the number of microspikes on the cell surface but failed to induce filopodia. Addition of heparin blocked the effect of full-length syndecan-2, suggesting that heparan sulfate chains in the extracellular domain are necessary to induce filopodia. Coexpression of cdc42Hs negative-dominant N17 blocked syndecan-2-induced filopodia and cdc42Hs positive-dominant V12 had a synergic effect. This indicates that active cdc42Hs is necessary for syndecan-2 induction of filopodia. These results provide a link between syndecan-2, actin cytoskeleton, and cdc42Hs.  相似文献   

3.
Heparan sulfate chains of syndecan-1 regulate ectodomain shedding   总被引:1,自引:0,他引:1  
Matrix metalloproteinases release intact syndecan-1 ectodomains from the cell surface giving rise to a soluble, shed form of the proteoglycan. Although it is known that shed syndecan-1 controls diverse pathophysiological responses in cancer, wound healing, inflammation, infection, and immunity, the mechanisms regulating shedding remain unclear. We have discovered that the heparan sulfate chains present on syndecan core proteins suppress shedding of the proteoglycan. Syndecan shedding is dramatically enhanced when the heparan sulfate chains are enzymatically degraded or absent from the core protein. Exogenous heparan sulfate or heparin does not inhibit shedding, indicating that heparan sulfate must be attached to the core protein to suppress shedding. Regulation of shedding by heparan sulfate occurs in multiple cell types, for both syndecan-1 and syndecan-4 and in murine and human syndecans. Mechanistically, the loss of heparan sulfate enhances the susceptibility of the core protein to proteolytic cleavage by matrix metalloproteinases. Enhanced shedding of syndecan-1 following loss of heparan sulfate is accompanied by a dramatic increase in core protein synthesis. This suggests that in response to an increase in the rate of shedding, cells attempt to maintain a significant level of syndecan-1 on the cell surface. Together these data indicate that the amount of heparan sulfate present on syndecan core proteins regulates both the rate of syndecan shedding and core protein synthesis. These findings assign new functions to heparan sulfate chains, thereby broadening our understanding of their physiological importance and implying that therapeutic inhibition of heparan sulfate degradation could impact the progression of some diseases.  相似文献   

4.
Among the four members of the syndecan family there exists a high level of divergence in the ectodomain core protein sequence. This has led to speculation that these core proteins bear important functional domains. However, there is little information regarding these functions, and thus far, the biological activity of syndecans has been attributed largely to their heparan sulfate chains. We have previously demonstrated that cell surface syndecan-1 inhibits invasion of tumor cells into three-dimensional gels composed of type I collagen. Inhibition of invasion is dependent on the syndecan heparan sulfate chains, but a role for the syndecan-1 ectodomain core protein was also indicated. To more closely examine this possibility and to map the regions of the ectodomain essential for syndecan-1-mediated inhibition of invasion, a panel of syndecan-1 mutational constructs was generated, and each construct was transfected individually into myeloma tumor cells. The anti-invasive effect of syndecan-1 is dramatically reduced by deletion of an ectodomain region close to the plasma membrane. Further mutational analysis identified a stretch of 5 hydrophobic amino acids, AVAAV (amino acids 222-226), critical for syndecan-1-mediated inhibition of cell invasion. This invasion regulatory domain is 26 amino acids from the start of the transmembrane domain. Importantly, this domain is functionally specific because its mutation does not affect syndecan-1-mediated cell binding to collagen, syndecan-1-mediated cell spreading, or targeting of syndecan-1 to specific cell surface domains. This invasion regulatory domain may play an important role in inhibiting tumor cell invasion, thus explaining the observed loss of syndecan-1 in some highly invasive cancers.  相似文献   

5.
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.  相似文献   

6.
Numerous functions of heparan sulfate proteoglycans are mediated through interactions between their heparan sulfate glycosaminoglycan chains and extracellular ligands. Ligand binding specificity for some molecules, including many growth factors, is determined by complex heparan sulfate fine structure, where highly sulfated, iduronate-rich domains alternate with N-acetylated domains. Syndecan-4, a cell surface heparan sulfate proteoglycan, has a distinct role in cell adhesion, suggesting its chains may differ from those of other cell surface proteoglycans. To determine whether the specific role of syndecan-4 correlates with a distinct heparan sulfate structure, we have analyzed heparan sulfate chains from the different surface proteoglycans of a single fibroblast strain and compared their ability to bind the Hep II domain of fibronectin, a ligand known to promote focal adhesion formation through syndecan-4. Despite distinct molecular masses of glypican and syndecan glycosaminoglycans and minor differences in disaccharide composition and sulfation pattern, the overall proportion and distribution of sulfated regions and the affinity for the Hep II domain were similar. Therefore, adhesion regulation requires core protein determinants of syndecan-4.  相似文献   

7.
《The Journal of cell biology》1996,132(6):1209-1221
Syndecan-1 is a cell surface proteoglycan containing a highly conserved transmembrane and cytoplasmic domain, and an extracellular domain bearing heparan sulfate glycosaminoglycans. Through these domains, syndecan-1 is proposed to have roles in growth factor action, extracellular matrix adhesion, and cytoskeletal organization that controls cell morphology. To study the role of syndecan-1 in cell adhesion and cytoskeleton reorganization, mouse syndecan-1 cDNA was transfected into human Raji cells, a lymphoblastoid cell line that grows as suspended cells and exhibits little or no endogenous cell surface heparan sulfate. High expressing transfectants (Raji-Sl cells) bind to and spread on immobilized thrombospondin or fibronectin, which are ligands for the heparan sulfate chains of the proteoglycan. This binding and spreading as not dependent on the cytoplasmic domain of the core protein, is mutants expressing core proteins with cytoplasmic deletions maintain the ability to spread. The spreading is mediated through engagement of the syndecan-1 core protein, as the Raji-S 1 cells also bind to and spread on immobilized mAb 281.2, an antibody specific for the ectodomain of the syndecan-1 core protein. Spreading on the antibody is independent of the heparan sulfate glycosaminoglycan chains and can be inhibited by competition with soluble mAb 281.2. The spreading can be inhibited by treatment with cytochalasin D or colchicine. These data suggest that the core protein of syndecan-1 mediates spreading through the formation of a multimolecular signaling complex at the cell surface that signals cytoskeleton reorganization. This complex may form via intramembrane or extracellular interactions with the syndecan core protein.  相似文献   

8.
T cells adopt a polarized morphology in lymphoid organs, where cell-to-cell transmission of HIV-1 is likely frequent. However, despite the importance of understanding virus spread in vivo, little is known about the HIV-1 life cycle, particularly its late phase, in polarized T cells. Polarized T cells form two ends, the leading edge at the front and a protrusion called a uropod at the rear. Using multiple uropod markers, we observed that HIV-1 Gag localizes to the uropod in polarized T cells. Infected T cells formed contacts with uninfected target T cells preferentially via HIV-1 Gag-containing uropods compared to leading edges that lack plasma-membrane-associated Gag. Cell contacts enriched in Gag and CD4, which define the virological synapse (VS), are also enriched in uropod markers. These results indicate that Gag-laden uropods participate in the formation and/or structure of the VS, which likely plays a key role in cell-to-cell transmission of HIV-1. Consistent with this notion, a myosin light chain kinase inhibitor, which disrupts uropods, reduced virus particle transfer from infected T cells to target T cells. Mechanistically, we observed that Gag copatches with antibody-crosslinked uropod markers even in non-polarized cells, suggesting an association of Gag with uropod-specific microdomains that carry Gag to uropods. Finally, we determined that localization of Gag to the uropod depends on higher-order clustering driven by its NC domain. Taken together, these results support a model in which NC-dependent Gag accumulation to uropods establishes a preformed platform that later constitutes T-cell-T-cell contacts at which HIV-1 virus transfer occurs.  相似文献   

9.
Proteoglycan accumulation by thioglycollate-elicited mouse peritoneal macrophages and a panel of murine monocyte-macrophage cell lines has been examined to determine whether these cells express plasma membrane-anchored heparan sulfate proteoglycans. Initially, cells were screened for heparan sulfate and chondroitin sulfate glycosaminoglycans after metabolic labeling with radiosulfate. Chondroitin sulfate is secreted to a variable extent by every cell type examined. In contrast, heparan sulfate is all but absent from immature pre-monocytes and is associated predominantly with the cell layer of mature macrophage-like cells. In the P388D1 cell line, the cell-associated chondroitin sulfate is largely present as a plasma membrane-anchored proteoglycan containing a 55 kD core protein moiety, which appears to be unique. In contrast, the cell-associated heparan sulfate is composed of a proteoglycan fraction and protein-free glycosaminoglycan chains, which accumulate intracellularly. A fraction of the heparan sulfate proteoglycan contains a lipophilic domain and can be released from cells following mild treatment with trypsin, suggesting that it is anchored in the plasma membrane. Isolation of this proteoglycan indicates that it is likely syndecan-4: it is expressed as a heparan sulfate proteoglycan at the cell surface, it is cleaved from the plasma membrane by low concentrations of trypsin, and it consists of a single 37 kD core protein moiety that co-migrates with syndecan-4 isolated from NMuMG mouse mammary epithelial cells. Northern analysis reveals that a panel of macrophage-like cell lines accumulate similar amounts of syndecan-4 mRNA, demonstrating that this proteoglycan is expressed by a variety of mature macrophage-like cells. Syndecan-1 mRNA is present only in a subset of these cells, suggesting that the expression of this heparan sulfate proteoglycan may be more highly regulated by these cells. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The syndecans comprise a family of cell surface heparan sulfate proteoglycans exhibiting complex biological functions involving the interaction of heparan sulfate side chains with a variety of soluble and insoluble heparin-binding extracellular ligands. Here we demonstrate an inverse correlation between the expression level of syndecan-2 and the metastatic potential of three clones derived from Lewis lung carcinoma 3LL. This correlation was proved to be a causal relationship, because transfection of syndecan-2 into the higher metastatic clone resulted in the suppression of both spontaneous and experimental metastases to the lung. Although the expression levels of matrix metalloproteinase-2 (MMP-2) and its cell surface activators, such as membrane-type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinase-2, were similar regardless of the metastatic potentials of the clones, elevated activation of MMP-2 was observed in the higher metastatic clone. Removal of heparan sulfate from the cell surface of low metastatic cells by treatment with heparitinase-I promoted MMP-2 activation, and transfection of syndecan-2 into highly metastatic cells suppressed MMP-2 activation. Furthermore, transfection of mutated syndecan-2 lacking glycosaminoglycan attachment sites into highly metastatic cells did not have any suppressive effect on MMP-2 activation, suggesting that this suppression was mediated by the heparan sulfate side chains of syndecan-2. Actually, MMP-2 was found to exhibit a strong binding ability to heparin, the dissociation constant value being 62 nM. These results indicate a novel function of syndecan-2, which acts as a suppressor for MMP-2 activation, causing suppression of metastasis in at least the metastatic system used in the present study.  相似文献   

11.
Activation of endothelial cells by cytokines and endotoxin causes procoagulant and pro-inflammatory changes over a period of hours. We postulated that the same functional state might be achieved more rapidly by changes in the metabolism of heparan sulfate, which supports many of the normal functions of endothelial cells. We previously found that binding of anti-endothelial cell antibodies and activation of complement on endothelial cells causes the rapid shedding of endothelial cell heparan sulfate. Here we report the biochemical mechanism responsible for the release of the heparan sulfate. Stimulation of endothelial cells by anti-endothelial cell antibodies and complement resulted in the release of 35S-heparan sulfate proteoglycan and partially degraded 35S-heparan sulfate chains. Degradation of the 35S-heparan sulfate chains was not necessary for release since heparin and suramin prevented cleavage of the heparan sulfate but did not inhibit release from stimulated endothelial cells. The 35S-heparan sulfate proteoglycan released from endothelial cells originated from the cell surface and had a core protein similar in size (70.5 kD) to syndecan-1. Release was due to proteolytic cleavage of the protein core by serine and/or cysteine proteinases since the release of heparan sulfate was inhibited 87% by antipain and 53% by leupeptin. Release of heparan sulfate coincided with a decrease of ∼︁7 kD in the mass of the protein core and with a loss of hydrophobicity of the proteoglycan, consistent with the loss of the hydrophobic transmembrane domain. The cleavage and release of cell-surface 35S-heparan sulfate proteoglycan might be a novel mechanism by which endothelial cells may rapidly acquire the functional properties of activated endothelial cells. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) is a protein of poorly understood function associated with fibrillin-1-containing microfibrils during elastinogenesis. In this study we investigated the molecular interactions of LTBP-2 with heparin and heparan sulfate proteoglycans (HSPGs) since unidentified cell surface HSPGs are critical for normal fiber assembly. In solid phase assays, heparin conjugated to albumin (HAC) bound strongly to recombinant full-length human LTBP-2. This interaction was completely blocked by addition of excess heparin, but not chondroitin sulfate, confirming specificity. Analysis of binding to LTBP-2 fragments showed that HAC bound strongly to N-terminal fragment LTBP-2 NT(H) and more weakly to central fragment LTBP-2 C(H). No binding was detected to C-terminal fragment LTBP-2 CT(H). Kds for heparin binding were calculated for full-length LTBP-2, LTBP-2 NT(H) and LTBP-2 C(H) as 0.9 nM, 0.7 nM and 80 nM respectively. HAC interaction with fragment LTBP-2 NT(H) was not sensitive to EDTA or EGTA indicating that binding had no requirement for Ca2+ ions whereas HAC binding to fragment LTBP-2 C(H) was markedly reduced by these chelating agents indicating a degree of Ca2+ dependence. Inhibition studies with synthetic peptides identified three major heparin binding sequences in fragment LTBP-2 NT(H), including sequence LTEKIKKIKIV in the first large cysteine-free domain of LTBP-2, adjacent to the previously identified fibulin-5 binding site. LTBP-2 was found to interact strongly in a heparin-inhibitable manner with cell surface HSPG syndecan-4, but showed no interaction with recombinant syndecan-2. LTBP-2 also showed strong interaction with the heparan sulfate chains of basement membrane HSPG, perlecan. The potential importance of HSPG–LTBP-2 interactions in elastic fiber assembly and microfibril attachment to basement membranes is discussed.  相似文献   

13.
Several processes that occur in the luminal compartments of the tissues are modulated by heparin-like polysaccharides. To identify proteins responsible for the expression of heparan sulfate at the apex of polarized cells, we investigated the polarity of the expression of the cell surface heparan sulfate proteoglycans in CaCo-2 cells. Domain- specific biotinylation of the apical and basolateral membranes of these cells identified glypican, a GPI-linked heparan sulfate proteoglycan, as the major source of apical heparan sulfate. Yet, most of this proteoglycan was expressed at the basolateral surface, an unexpected finding for a glypiated protein. Metabolic labeling and chase experiments indicated that sorting mechanisms, rather than differential turnover, accounted for this bipolar expression of glypican. Chlorate treatment did not affect the polarity of the expression of glypican in CaCo-2 cells, and transfectant MDCK cells expressed wild-type glypican and a syndecan-4/glypican chimera also in an essentially unpolarized fashion. Yet, complete removal of the heparan sulfate glycanation sites from the glypican core protein resulted in the nearly exclusive apical targeting of glypican in the transfectants, whereas two- and one-chain mutant forms had intermediate distributions. These results indicate that glypican accounts for the expression of apical heparan sulfate, but that glycanation of the core protein antagonizes the activity of the apical sorting signal conveyed by the GPI anchor of this proteoglycan. A possible implication of these findings is that heparan sulfate glycanation may be a determinant of the subcellular expression of glypican. Alternatively, inverse glycanation-apical sorting relationships in glypican may insure near constant deliveries of HS to the apical compartment, or "active" GPI-mediated entry of heparan sulfate into apical membrane compartments may require the overriding of this antagonizing effect of the heparan sulfate chains.  相似文献   

14.
Evidence suggests that endothelial cell layer heparan sulfate proteoglycans include a variety of different sized molecules which most likely contain different protein cores. In the present report, approximately half of endothelial cell surface associated heparan sulfate proteoglycan is shown to be releasable with soluble heparin. The remaining cell surface heparan sulfate proteoglycan, as well as extracellular matrix heparan sulfate proteoglycan, cannot be removed from the cells with heparin. The heparin nonreleasable cell surface proteoglycan can be released by membrane disrupting agents and is able to intercalate into liposomes. When the heparin releasable and nonreleasable cell surface heparan sulfate proteoglycans are compared, differences in proteoglycan size are also evident. Furthermore, the intact heparin releasable heparan sulfate proteoglycan is closer in size to proteoglycans isolated from the extracellular matrix and from growth medium than to that which is heparin nonreleasable. These data indicate that cultured porcine aortic endothelial cells contain at least two distinct types of cell surface heparan sulfate proteoglycans, one of which appears to be associated with the cells through its glycosaminoglycan chains. The other (which is more tightly associated) is probably linked via a membrane intercalated protein core.Abbreviations ECM extracellular matrix - HSPG heparan sulfate proteoglycan - PAE porcine aortic endothelial - PBS phosphate buffered saline  相似文献   

15.
Laminin-5, consisting of the alpha 3, beta 3, and gamma 2 chains, is localized in the skin basement membrane and supports the structural stability of the epidermo-dermal linkage and regulates various cellular functions. The alpha chains of laminins have been shown to have various biological activities. In this study, we identified a sequence of the alpha 3 chain C-terminal globular domain (LG1-LG5 modules) required for both heparin binding and cell adhesion using recombinant proteins and synthetic peptides. We found that the LG3 and LG4 modules have activity for heparin binding and that LG4 has activity for cell adhesion. Studies with synthetic peptides delineated the A3G75aR sequence (NSFMALYLSKGR, residues 1412--1423) within LG4 as a major site for both heparin and cell binding. Substitution mutations in LG4 and A3G75aR identified the Lys and Arg of the A3G75aR sequence as critical for these activities. Cell adhesion to LG4 and A3G75aR was inhibited by heparitinase I treatment of cells, suggesting that cell binding to the A3G75aR site was mediated by cell surface heparan sulfate proteoglycans. We showed by affinity chromatography that syndecan-2 from fibroblasts bound to LG4. Solid-phase assays confirmed that syndecan-2 interacted with the A3G75aR peptide sequence. Stably transfected 293T cells with expression vectors for syndecan-2 and -4, but not glypican-1, specifically adhered to LG4 and A3G75aR. These results indicate that the A3G75aR sequence within the laminin alpha 3 LG4 module is responsible for cell adhesion and suggest that syndecan-2 and -4 mediate this activity.  相似文献   

16.
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.  相似文献   

17.
L-selectin is a C-type lectin expressed on leukocytes that is involved in both lymphocyte homing to the lymph node and leukocyte extravasation during inflammation. Known L-selectin ligands include sulfated Lewis-type carbohydrates, glycolipids, and proteoglycans. Previously, we have shown that in situ detection of different types of L-selectin ligands is highly dependent on the tissue fixation protocol used. Here we use this knowledge to specifically examine the expression of L-selectin binding proteoglycans in normal mouse tissues. We show that L-selectin binding chondroitin/dermatan sulfate proteoglycans are present in cartilage, whereas L-selectin binding heparan sulfate proteoglycans are present in spleen and kidney. Furthermore, we show that L-selectin only binds a subset of renal heparan sulfates, attached to a collagen type XVIII protein backbone and predominantly present in medullary tubular and vascular basement membranes. As L-selectin does not bind other renal heparan sulfate proteoglycans such as perlecan, agrin, and syndecan-4, and not all collagen type XVIII expressed in the kidney binds L-selectin, this indicates that there is a specific L-selectin binding domain on heparan sulfate glycosaminoglycan chains. Using an in vitro L-selectin binding assay, we studied the contribution of N-sulfation, O-sulfation, C5-epimerization, unsubstituted glucosamine residues, and chain length in L-selectin binding to heparan sulfate/heparin glycosaminoglycan chains. Based on our results and the accepted model of heparan sulfate domain organization, we propose a model for the interaction of L-selectin with heparan sulfate glycosaminoglycan chains. Interestingly, this opens the possibility of active regulation of L-selectin binding to heparan sulfate proteoglycans, e.g. under inflammatory conditions.  相似文献   

18.
The EC rabbit endothelial cell line was transfected with the EJ-ras oncogene (EJ-ras EC). EJ-ras EC cells display over expression of the Ras oncogene, morphological changes and deregulation of the cell cycle, becoming more densely populated and serum-independent. In addition, EJ-ras-transfectant cells show higher levels of the syndecan-4 mRNA. In addition to the increase in the core protein, a parallel increase in the glycosylation of the syndecan-4 protein, a proteoglycan that bears heparan sulfate chains, also occurs. This increase is observed both for the heparan sulfate proteoglycan synthesized by the cells and for that secreted to the culture medium. This enhancement in heparan sulfate synthesis was observed through metabolic labeling of the cells, immunoprecipitation of syndecan-4 and heparitinases treatment. Furthermore, the EJ-ras-transfectant cells do not exhibit decreased synthesis of heparan sulfate during the G(1)-S phase transition, as observed for the parental cell line. Also, heparan sulfate synthesis is not stimulated by PMA as displayed by parental endothelial cells. Significant structural changes of heparan sulfate, such as decreased O-sulfation, were observed in the EJ-ras-transfected cells. Decreases in the mRNA levels of some enzymes (glucuronosyl C-5 epimerase, iduronosyl-2-O-sulfotransferase, glucosaminyl-6-O-sulfotransferase-1 and N-deacetylase/N-sulfotransferase-1), involved in the biosynthetic pathway of heparan sulfate, were also observed. The results suggest that overexpression of the EJ-ras oncogene alters the cell cycle, through signal transduction cascades, upregulates the expression of syndecan-4, and downregulates enzymes involved in the heparan sulfate biosynthesis related to chain modification, leading to the structural changes of the heparan sulfate syndecan-4 proteoglycan in endothelial cells.  相似文献   

19.
20.
When shed from the cell surface, the heparan sulfate proteoglycan syndecan-1 can facilitate the growth, angiogenesis, and metastasis of tumors. Here we report that tumor cell expression of heparanase, an enzyme known to be a potent promoter of tumor progression and metastasis, regulates both the level and location of syndecan-1 within the tumor microenvironment by enhancing its synthesis and subsequent shedding from the tumor cell surface. Heparanase regulation of syndecan-1 is detected in both human myeloma and breast cancer cell lines. This regulation requires the presence of active enzyme, because mutated forms of heparanase lacking heparan sulfate-degrading activity failed to influence syndecan-1 expression or shedding. Removal of heparan sulfate from the cell surface using bacterial heparitinase dramatically accelerated syndecan-1 shedding, suggesting that the effects of heparanase on syndecan-1 expression by tumor cells may be due, at least in part, to enzymatic removal or reduction in the size of heparan sulfate chains. Animals bearing tumors formed from cells expressing high levels of heparanase or animals transgenic for heparanase expression exhibited elevated levels of serum syndecan-1 as compared with controls, indicating that heparanase regulation of syndecan-1 expression and shedding can occur in vivo and impact cancer progression and perhaps other pathological states. These results reveal a new mechanism by which heparanase promotes an aggressive tumor phenotype and suggests that heparanase and syndecan-1 act synergistically to fine tune the tumor microenvironment and ensure robust tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号