首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that high-level (300-fold normal) cardiac overexpression of A1-adenosine receptors (A1-ARs) in transgenic (TG) mice protects isolated hearts against ischemia-reperfusion injury. However, this high level of overexpression is associated with bradycardia and increased incidence of arrhythmia during ischemia in intact mice, which interfered with studies to determine whether this line of TG mice might also be protected against myocardial infarction (MI) in vivo. For these studies, we therefore selected a line of TG mice that overexpresses the A1-AR at more moderate levels (30-fold normal), which affords cardioprotection in the isolated heart while minimizing bradycardia and arrhythmia during ischemia in intact mice. Wild-type (WT; n = 10) and moderate-level A1-AR TG (n = 10) mice underwent 45 min of left anterior descending coronary artery occlusion, followed by 24-h reperfusion. Infarct size and region at risk were determined by triphenyltetrazolium chloride and phthalo blue staining, respectively. Infarct size (% region at risk) in WT mice was 52 +/- 3%, whereas overexpression of A1-ARs in the TG mice markedly reduced infarct size to 31 +/- 3% (P < 0.05). Furthermore, contractile function (left ventricular ejection fraction) as determined by cardiac magnetic resonance imaging 24 h after MI was better preserved in TG vs. WT mice. Cardiac overexpression of A1-ARs reduces infarct size by 40% and preserves cardiac function in intact mice after MI.  相似文献   

2.
Although it has been shown that endothelial nitric oxide synthase (eNOS)-derived nitric oxide downregulates mitochondrial oxygen consumption during early reperfusion, its effects on inducible NOS (iNOS) induction and myocardial injury during late reperfusion are unknown. Wild-type (WT) and eNOS(-/-) mice were subjected to 30 min of coronary ligation followed by reperfusion. Expression of iNOS mRNA and protein levels and peroxynitrite production were lower in postischemic myocardium of eNOS(-/-) mice than levels in WT mice 48 h postreperfusion. Significantly improved hemodynamics (+/-dP/dt, left ventricular systolic pressure, mean arterial pressure), increased rate pressure product, and reduced myocardial infarct size (18 +/- 2.5% vs. 31 +/- 4.6%) were found 48 h after reperfusion in eNOS(-/-) mice compared with WT mice. Myocardial infarct size was also significantly decreased in WT mice treated with the specific iNOS inhibitor 1400W (20.5 +/- 3.4%) compared with WT mice treated with PBS (33.9 +/- 5.3%). A marked reperfusion-induced hyperoxygenation state was observed by electron paramagnetic resonance oximetry in postischemic myocardium, but Po(2) values were significantly lower from 1 to 72 h in eNOS(-/-) than in WT mice. Cytochrome c-oxidase activity and NADH dehydrogenase activity were significantly decreased in postischemic myocardium in WT and eNOS(-/-) mice compared with baseline control, respectively, and NADH dehydrogenase activity was significantly higher in eNOS(-/-) than in WT mice. Thus deficiency of eNOS exerted a sustained beneficial effect on postischemic myocardium 48 h after reperfusion with preserved mitochondrial function, which appears to be due to decreased iNOS induction and decreased iNOS-derived peroxynitrite in postischemic myocardium.  相似文献   

3.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

4.
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports where pharmacological inhibition of SERCA improved postischemic function. SERCA2a is the primary cardiac isoform regulating intracellular Ca(2+) homeostasis; however, SERCA1a has been shown to substitute SERCA2a with faster Ca(2+) transport kinetics. Therefore, to further address this issue and to evaluate whether SERCA1a expression could improve postischemic cardiac function and myocardial salvage, in vitro and in vivo myocardial I/R studies were performed on SERCA1a transgenic (SERCA1a(+/+)) and nontransgenic (NTG) mice. Langendorff-perfused hearts were subjected to 30 min of global ischemia followed by reperfusion. Baseline preischemic coronary flow and left ventricular developed pressure were significantly greater in SERCA1a(+/+) mice compared with NTG mice. Independent of reperfusion-induced oxidative stress, SERCA1a(+/+) hearts demonstrated greatly improved postischemic (45 min) contractile recovery with less persistent arrhythmias compared with NTG hearts. Morphometry showed better-preserved myocardial structure with less infarction, and electron microscopy demonstrated better-preserved myofibrillar and mitochondrial ultrastructure in SERCA1a(+/+) hearts. Importantly, intraischemic Ca(2+) levels were significantly lower in SERCA1a(+/+) hearts. The cardioprotective effect of SERCA1a was also observed during in vivo regional I/R with reduced myocardial infarct size after 24 h of reperfusion. Thus SERCA1a(+/+) hearts were markedly protected against I/R injury, suggesting that expression of SERCA 1a isoform reduces postischemic Ca(2+) overload and thus provides potent myocardial protection.  相似文献   

5.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

6.
7.
Clearance of edema fluid from the alveolar space can be enhanced by endogenous and exogenous beta-agonists. To selectively delineate the effects of alveolar type II (ATII) cell beta(2)-adrenergic receptors (beta(2)-ARs) on alveolar fluid clearance (AFC), we generated transgenic (TG) mice that overexpressed the human beta(2)-AR under control of the rat surfactant protein C promoter. In situ hybridization showed that transgene expression was consistent with the distribution of ATII cells. TG mice expressed 4.8-fold greater beta(2)-ARs than nontransgenic (NTG) mice (939 +/- 113 vs. 194 +/- 18 fmol/mg protein; P < 0.001). Basal AFC in TG mice was approximately 40% greater than that in untreated NTG mice (15 +/- 1.4 vs. 10.9 +/- 0.6%; P < 0.005) and approached that of NTG mice treated with the beta-agonist formoterol (19.8 +/- 2.2%; P = not significant). Adrenalectomy decreased basal AFC in TG mice to 9.7 +/- 0.5% but had no effect on NTG mice (11.5 +/- 1.0%). Na(+)-K(+)-ATPase alpha(1)-isoform expression was unchanged, whereas alpha(2)-isoform expression was approximately 80% greater in the TG mice. These findings show that beta(2)-AR overexpression can be an effective means to increase AFC in the absence of exogenous agonists and that AFC can be stimulated by activation of beta(2)-ARs specifically expressed on ATII cells.  相似文献   

8.
9.
Sildenafil, a potent inhibitor of phosphodiesterase type 5, has recently been investigated in animal models of myocardial ischemia-reperfusion (MI/R) injury. Previous studies have suggested that the protective effects of sildenafil are mediated via activation of endothelial nitric oxide (NO) synthesis (eNOS) and inducible NOS (iNOS). To further investigate the protective mechanism of sildenafil, we subjected wild-type, eNOS, and iNOS null animals to 30 min of myocardial ischemia and 24 h of reperfusion. Treatment with 0.06 mg/kg sildenafil 5 min before reperfusion significantly reduced myocardial infarct size in wild-type, eNOS null mice (eNOS(-/-)), and iNOS(-/-) animals. Additionally, the low dose utilized in this study did not alter myocardial cGMP. These results suggest that acute low-dose sildenafil-mediated cardioprotection is independent of eNOS, iNOS, and cGMP. In a second series of experiments, we investigated sildenafil in db/db diabetic mice subjected to MI/R. We found that sildenafil failed to protect diabetic mice against MI/R. However, NO(.) donor therapy was found to significantly protect against MI/R injury in both nondiabetic and diabetic mice, suggesting that protection could be conferred in diabetic mice and that the upstream modulator of soluble guanylyl cyclase, NO(.), may mediate protection independent of cGMP signaling. The present study suggests that further research is needed to delineate the precise mechanisms by which sildenafil exerts cardioprotection.  相似文献   

10.
Diallyl trisulfide (DATS), a polysulfide constituent found in garlic oil, is capable of the release of hydrogen sulfide (H(2)S). H(2)S is a known cardioprotective agent that protects the heart via antioxidant, antiapoptotic, anti-inflammatory, and mitochondrial actions. Here, we investigated DATS as a stable donor of H(2)S during myocardial ischemia-reperfusion (MI/R) injury in vivo. We investigated endogenous H(2)S levels, infarct size, postischemic left ventricular function, mitochondrial respiration and coupling, endothelial nitric oxide (NO) synthase (eNOS) activation, and nuclear E2-related factor (Nrf2) translocation after DATS treatment. Mice were anesthetized and subjected to a surgical model of MI/R injury with and without DATS treatment (200 μg/kg). Both circulating and myocardial H(2)S levels were determined using chemiluminescent gas chromatography. Infarct size was measured after 45 min of ischemia and 24 h of reperfusion. Troponin I release was measured at 2, 4, and 24 h after reperfusion. Cardiac function was measured at baseline and 72 h after reperfusion by echocardiography. Cardiac mitochondria were isolated after MI/R, and mitochondrial respiration was investigated. NO metabolites, eNOS phosphorylation, and Nrf2 translocation were determined 30 min and 2 h after DATS administration. Myocardial H(2)S levels markedly decreased after I/R injury but were rescued by DATS treatment (P < 0.05). DATS administration significantly reduced infarct size per area at risk and per left ventricular area compared with control (P < 0.001) as well as circulating troponin I levels at 4 and 24 h (P < 0.05). Myocardial contractile function was significantly better in DATS-treated hearts compared with vehicle treatment (P < 0.05) 72 h after reperfusion. DATS reduced mitochondrial respiration in a concentration-dependent manner and significantly improved mitochondrial coupling after reperfusion (P < 0.01). DATS activated eNOS (P < 0.05) and increased NO metabolites (P < 0.05). DATS did not appear to significantly induce the Nrf2 pathway. Taken together, these data suggest that DATS is a donor of H(2)S that can be used as a cardioprotective agent to treat MI/R injury.  相似文献   

11.
This study utilized porcine models of postinfarction left ventricular (LV) remodeling [myocardial infarction (MI); n = 8] and concentric LV hypertrophy secondary to aortic banding (AoB; n = 8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics ((31)P-magnetic resonance spectroscopy). Physiological assessments were conducted at a 4-wk time point after MI or AoB surgery. Comparisons were made with size-matched normal animals (normal; n = 8). Both MI and AoB instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group (P < 0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from that in normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of PCr/ATP decreased from 1.98 +/- 0.16 (normal) to 1.06 +/- 0.30 (MI; P < 0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, P < 0.01 vs. normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone.  相似文献   

12.

Background

Calpain is activated following myocardial infarction and ablation of calpastatin (CAST), an endogenous inhibitor of calpains, promotes left ventricular remodeling after myocardial infarction (MI). The present study aimed to investigate the effect of transgenic over-expression of CAST on the post-infarction myocardial remodeling process.

Method

We established transgenic mice (TG) ubiquitously over-expressing human CAST protein and produced MI in TG mice and C57BL/6J wild-type (WT) littermates.

Results

The CAST protein expression was profoundly upregulated in the myocardial tissue of TG mice compared with WT littermates (P < 0.01). Overexpression of CAST significantly reduced the infarct size (P < 0.01) and blunted MI-induced interventricular hypertrophy, global myocardial fibrosis and collagen I and collagen III deposition, hypotension and hemodynamic disturbances at 21 days after MI. Moreover, the MI-induced up-regulation and activation of calpains were obviously attenuated in CAST TG mice. MI-induced down-regulation of CAST was partially reversed in TG mice. Additionally, the MI-caused imbalance of matrix metalloproteinases and their inhibitors was improved in TG mice.

Conclusions

Transgenic over-expression of CAST inhibits calpain activation and attenuates post-infarction myocardial remodeling.  相似文献   

13.
We sought to delineate mechanisms through which the lack of plasminogen activator inhibitor (PAI)-1 in the heart affects remodeling of the heart early after myocardial infarction (MI). MI was induced by coronary occlusion in 10-weeks old PAI-1 knockout (KO) and control mice. Three days after MI, systolic and diastolic function was assessed with high-resolution echocardiography, infarct size was determined biochemically and histologically and accumulation of acute inflammatory cells in zones of infarction was characterized by immunocytochemistry. PAI-1 KO mice exhibited markedly thickened diastolic left ventricular anterior walls (1.38 ± 0.38 mm vs. 0.77 ± 0.13 SD), more profound depression of global and regional cardiac function (19 vs. 22% fractional shortening), and greater evidence of diastolic dysfunction (average E wave amplitude = 568 vs. 675 mm/s) all of which were significant. Markedly greater extent of infarction was demonstrated biochemically and histologically in knockout mice compared with controls (76 vs. 29% of the left ventricle, P < 0.05) associated with striking hemorrhage and intense inflammation. Fibrosis normalized for infarct size was markedly reduced (0.006 vs. 0.022 μg hydroxyproline/mg dry weight). Thus, lack of PAI-1 in the heart exerted deleterious effects mediated, at least in part by increased inflammation and hemorrhage and attenuating of fibrosis.  相似文献   

14.
Myocardial infarction (MI) may produce significant inflammatory changes and adverse ventricular remodeling leading to heart failure and premature death. Pharmacologic, stem cell transplantation, and exercise have not halted the inexorable rise in the prevalence and great economic costs of heart failure despite extensive investigations of such treatments. New therapeutic modalities are needed. Whole Body Periodic Acceleration (pGz) is a non-invasive technology that increases pulsatile shear stress to the endothelium thereby producing several beneficial cardiovascular effects as demonstrated in animal models, normal humans and patients with heart disease. pGz upregulates endothelial derived nitric oxide synthase (eNOS) and its phosphorylation (p-eNOS) to improve myocardial function in models of myocardial stunning and preconditioning. Here we test whether pGz applied chronically after focal myocardial infarction in rats improves functional outcomes from MI. Focal MI was produced by left coronary artery ligation. One day after ligation animals were randomized to receive daily treatments of pGz for four weeks (MI-pGz) or serve as controls (MI-CONT), with an additional group as non-infarction controls (Sham). Echocardiograms and invasive pressure volume loop analysis were carried out. Infarct transmurality, myocardial fibrosis, and markers of inflammatory and anti-inflammatory cytokines were determined along with protein analysis of eNOS, p-eNOS and inducible nitric oxide synthase (iNOS).At four weeks, survival was 80% in MI-pGz vs 50% in MI-CONT (p< 0.01). Ejection fraction and fractional shortening and invasive pressure volume relation indices of afterload and contractility were significantly better in MI-pGz. The latter where associated with decreased infarct transmurality and decreased fibrosis along with increased eNOS, p-eNOS. Additionally, MI-pGz had significantly lower levels of iNOS, inflammatory cytokines (IL-6, TNF-α), and higher level of anti-inflammatory cytokine (IL-10). pGz improved survival and contractile performance, associated with improved myocardial remodeling. pGz may serve as a simple, safe, non-invasive therapeutic modality to improve myocardial function after MI.  相似文献   

15.
Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) may play an important role in attenuating cardiac remodeling and apoptosis after myocardial infarction. However, the anti-inflammation effects of eNOS in infarcted myocardium and the role of MAPK signaling in eNOS/NO mediated cardiac remodeling have not yet been elucidated. Adenovirus carrying Human eNOS gene was delivered locally into heart 4 days prior to induction of myocardial infarction (MI) by left anterior descending coronary artery ligation. Monocyte/macrophage infiltration was detected by ED-1 immunohistochemistry. Western blot was employed to examine the activation of MAPK. eNOS gene transfer significantly reduced myocardial infarct size and improved cardiac contractility as well as left ventricle (LV) diastolic function at 7 days after MI. In addition, eNOS gene transfer decreased monocyte/macrophage infiltration in the infarct region of the heart. Phosphorylation of MAPK after MI were also dramatically reduced by eNOS gene transfer. All the protective effects of eNOS were blocked by N(ω)-nitro-l-arginine methyl ester (L-NAME) administration, indicating a NO-mediated event. These results demonstrate that the eNOS/NO system provides cardiac protection after MI injury through inhibition of inflammation and suppression of MAPK signaling.  相似文献   

16.
A decrease in the supply of ATP from the creatine kinase (CK) system is thought to contribute to the evolution of heart failure. However, previous studies on mice with a combined knockout of the mitochondrial and cytosolic CK (CK(-/-)) have not revealed overt left ventricular dysfunction. The aim of this study was to employ novel MRI techniques to measure maximal myocardial velocity (V(max)) and myocardial perfusion and thus determine whether abnormalities in the myocardial phenotype existed in CK(-/-) mice, both at baseline and 4 wk after myocardial infarction (MI). As a result, myocardial hypertrophy was seen in all CK(-/-) mice, but ejection fraction (EF) remained normal. V(max), however, was significantly reduced in the CK(-/-) mice [wild-type, 2.32 +/- 0.09 vs. CK(-/-), 1.43 +/- 0.16 cm/s, P < 0.05; and wild-type MI, 1.53 +/- 0.11 vs. CK(-/-) MI, 1.26 +/- 0.11 cm/s, P = not significant (NS), P < 0.05 vs. baseline]. Myocardial perfusion was also lower in the CK(-/-) mice (wild-type, 6.68 +/- 0.27 vs. CK(-/-), 4.12 +/- 0.63 ml/g.min, P < 0.05; and wild-type MI, 3.97 +/- 0.65 vs. CK(-/-) MI, 3.71 +/- 0.57 ml/g.min, P = NS, P < 0.05 vs. baseline), paralleled by a significantly reduced capillary density (histology). In conclusion, myocardial function in transgenic mice may appear normal when only gross indexes of performance such as EF are assessed. However, the use of a combination of novel MRI techniques to measure myocardial perfusion and mechanics allowed the abnormalities in the CK(-/-) phenotype to be detected. The myocardium in CK-deficient mice is characterized by reduced perfusion and reduced maximal contraction velocity, suggesting that the myocardial hypertrophy seen in these mice cannot fully compensate for the absence of the CK system.  相似文献   

17.
Ataxia telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to DNA damage. We recently reported that ATM plays a protective role in myocardial remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM in cardiac remodeling using myocardial infarction (MI) as a model. Methods and Results: Left ventricular (LV) structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and fibrosis-related proteins were examined in wild-type (WT) and ATM heterozygous knockout (hKO) mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed decreased percent fractional shortening (%FS) and ejection fraction (EF) in both MI groups when compared to their respective sham groups. However, the decrease in %FS and EF was significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes.  相似文献   

18.
We studied whether apelin-13 is cardioprotective against ischemia/reperfusion injury if given as either a pre- or postconditioning mimetic and whether the improved postischemic mechanical recovery induced by apelin-13 depends only on the reduced infarct size or also on a recovery of function of the viable myocardium. We also studied whether nitric oxide (NO) is involved in apelin-induced protection and whether the reported ischemia-induced overexpression of the apelin receptor (APJ) plays a role in cardioprotection. Langendorff-perfused rat hearts underwent 30 min of global ischemia and 120 min of reperfusion. Left ventricular pressure was recorded. Infarct size and lactate dehydrogenase release were determined to evaluate the severity of myocardial injury. Apelin-13 was infused at 0.5 μM concentration for 20 min either before ischemia or in early reperfusion, without and with NO synthase inhibition by N(G)-nitro-l-arginine (l-NNA). In additional experiments, before ischemia also 1 μM apelin-13 was tested. APJ protein level was measured before and after ischemia. Whereas before ischemia apelin-13 (0.5 and 1.0 μM) was ineffective, after ischemia it reduced infarct size from 54 ± 2% to 26 ± 4% of risk area (P < 0.001) and limited the postischemic myocardial contracture (P < 0.001). l-NNA alone increased postischemic myocardial contracture. This increase was attenuated by apelin-13, which, however, was unable to reduce infarct size. Ischemia increased APJ protein level after 15-min perfusion, i.e., after most of reperfusion injury has occurred. Apelin-13 protects the heart only if given after ischemia. In this protection NO plays an important role. Apelin-13 efficiency as postconditioning mimetic cannot be explained by the increased APJ level.  相似文献   

19.
The purpose of this study was to investigate the effects of bosentan, a mixed endothelin receptor A and B subtype antagonist, on myocardial ischemia-reperfusion injury and to explore the influence of the timing of bosentan administration on its cardioprotective effects. Adult rat hearts were perfused by the Langendorff technique with Krebs-Henseleit solution (KH) at a constant flow rate at 10 mL/min. Global myocardial ischemia was induced by stopping KH perfusion for 40 min, and this was followed by 60 min of reperfusion. Hearts were randomized to 1 of 3 experimental groups (n = 7 each): untreated control; treatment with bosentan 1 micromol/L 10 min prior to, during 40 min global ischemia, and for 15 min of reperfusion (BOS); or treatment with bosentan 1 micromol/L after 15 min of reperfusion (BOS-R). We observed that BOS-R, but not the BOS treatment regimen, significantly reduced the release of cardiac-specific creatine kinase and postischemic myocardial infarct size (P < 0.05 vs. control) without affecting myocardial contractility. Left ventricular developed pressure in the BOS group was significantly (P < 0.01) lower than that in the control group throughout reperfusion. It is concluded that pharmacologically delayed antagonism of endothelin-1 during reperfusion attenuates postischemic myocardial injury. Endothelin-1 antagonist application during early reperfusion may exacerbate postischemic myocardial dysfunction.  相似文献   

20.
Oxygen free radicals induce de novo synthesis of tissue factor (TF), the initiator of the extrinsic pathway of coagulation, within the coronary vasculature during postischemic reperfusion. In the present study we wanted to assess whether TF expression might cause myocardial injury during postischemic reperfusion. Anesthetized rabbits underwent 30 min of coronary occlusion followed by 5.5 h of reperfusion. At reperfusion the animals received 1) saline (n = 8), 2) human recombinant, active site-blocked activated factor VII (FVIIai, 1 mg/kg, n = 8), or 3) human recombinant activated FVII (FVIIa, 1 mg/kg, n = 8). FVIIai binds to TF as native FVII, but with the active site blocked it inhibits TF procoagulant activity. The area at risk of infarction (AR), the infarct size (IS), and the no-reflow area (NR) were determined at the end of the experiment. FVIIai resulted in a significant reduction in IS and NR with respect to control animals (28.1 +/- 11.3 and 11.1 +/- 6.1% of AR vs. 59.8 +/- 12.8 and 24.4 +/- 2.7% of AR, respectively, P < 0.01), whereas FVIIa resulted in a significant increase in IS and NR to 80.1 +/- 13. 1 and 61.9 +/- 13.8% of AR, respectively (P < 0.01). In conclusion, TF-mediated activation of the extrinsic coagulation pathway makes an important contribution to myocardial injury during postischemic reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号