首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemodynamic and proinflammatory effects of endothelin-1 (ET-1) in proximal (1st/2nd order) and terminal (3rd/4th order) arterioles and venules were examined in small intestine submucosa of anesthetized guinea pigs. Vessel diameter (D), red blood cell velocity, and blood flow (Q) were determined in eight proximal and eight terminal microvessels before and at 20 min of ET-1 suffusion (10(-10), 10(-9), and 10(-8) M) and then with endothelin-A (ET(A))-receptor blockade with BQ-123 (10(-5) M). This protocol was repeated with platelet-activating factor (PAF) inhibition (WEB-2086, 1.0 mg/kg iv; n = 16). The ET-1-mediated microvascular responses were also examined with endothelin-B (ET(B))-receptor blockade using BQ-788 (10(-5) M; n = 11) alone or with ET(A+B)-receptor blockade with BQ-123 + BQ-788 (n = 10). Microvascular permeability was assessed by FITC-albumin (25 mg/kg iv) extravasation in seven series: 1) buffered modified Krebs solution suffusion (n = 6), 2) histamine suffusion (HIS; 10(-3) M, n = 5), 3) ET-1 suffusion (10(-8) M, n = 5), 4) BQ-123 (10(-5) M) plus ET-1 suffusion (n = 5), 5) PAF inhibition before ET-1 suffusion (n = 5), 6) histamine-1 (H1)-receptor blockade (diphenhydramine, 20 mg/kg iv) before ET-1 suffusion (n = 5), and 7) ET(B)-receptor blockade before (BQ-788 10(-5) M; n = 3) or with ET-1 suffusion (n = 3). D and Q decreased at 10(-8) M ET-1 and returned to control values with BQ-123 and BQ-123+BQ788 but not with BQ-788 in proximal microvessels. D did not change in terminal microvessels with ET-1 (10(-8) M) but decreased with BQ-788 and increased with BQ-123. PAF inhibition did not affect the D and Q responses of proximal microvessels to ET-1 but prevented the fall in Q in terminal microvessels with ET-1. ET-1 increased vascular permeability to approximately 1/3 of that with HIS; this response was prevented with BQ-123 and WEB-2086 but not with H1-receptor blockade. This is the first evidence that submucosal terminal microvessel flow is reduced with ET-1 independent of vessel diameter changes and that this response is associated with increased microvascular permeability mediated via ET(A)-receptor stimulation and PAF activation.  相似文献   

2.
Endothelin (ET)-1 acts on ETA and ETB receptors. The latter include ETB1 (endothelial) and ETB2 (muscular) subtypes, which mediate opposite effects on vascular tone. This study investigated, in rabbit papillary muscles (n = 84), the myocardial effects of ETB stimulation. ET-1 (10(-9) M) was given in the absence or presence of BQ-123 (ETA antagonist). The effects of IRL-1620 (ETB1 agonist, 10(-10)-10(-6) M) or sarafotoxin S6c (ETB agonist, 10(-10)-10(-6) M) were evaluated in muscles with intact or damaged endocardial endothelium (EE); intact EE, in the presence of NG-nitro-L-arginine (L-NNA); and intact EE, in the presence of indomethacin (Indo). Sarafotoxin S6c effects were also studied in the presence of BQ-788 (ETB2 antagonist). ET-1 alone increased 64 +/- 18% active tension (AT) but decreased it by 4 +/- 2% in the presence of BQ-123. In muscles with intact EE, sarafotoxin S6c alone did not significantly alter myocardial performance. Sarafotoxin S6c (10(-6) M) increased, however, AT by 120 +/- 27% when EE was damaged and by 39 +/- 8% or 23 +/- 6% in the presence of l-NNA or Indo, respectively. In the presence of BQ-788, sarafotoxin S6c decreased AT (21 +/- 3% at 10(-6) M) in muscles with intact EE, an effect that was abolished when EE was damaged. IRL-1620 also decreased AT (22 +/- 3% at 10(-6) M) in muscles with intact EE, an effect that was abolished when EE was damaged or in the presence of L-NNA or Indo. In conclusion, the ETB-mediated negative inotropic effect is presumably due to ETB1 stimulation, requires an intact EE, and is mediated by NO and prostaglandins, whereas the ETB-mediated positive inotropic effect, observed when EE was damaged or NO and prostaglandins synthesis inhibited, is presumably due to ETB2 stimulation.  相似文献   

3.
Endothelin-1 (ET-1) has been reported to induce pulmonary vasoconstriction via either ET(A) or ET(B) receptors, and vasorelaxation after ET-1 injection has been observed. Our study investigated the effects of ET-1 in isolated rabbit lungs, which were studied at basal tone (part I) and after preconstriction (U-46619; part II). Pulmonary arterial pressure (PAP) and lung weight gain were monitored continuously. In part I, ET-1 (10(-8) M; n = 6; control) was injected after pretreatment with the ET(A)-receptor antagonist BQ-123 (10(-6) M; n = 6) or the ET(B)-receptor antagonist BQ-788 (10(-6) M; n = 6). The same protocol was carried out in part II after elevation of pulmonary vascular tone. ET-1 induced an immediate PAP increase (DeltaPAP 4.3 +/- 0.4 mmHg at 10 min) that was attenuated by pretreatment with BQ-123 (P < 0.05 at 10 min and P < 0.01 thereafter) and that was more pronounced after BQ-788 (P < 0.01 at 10 min and P < 0.001 thereafter). In part II, ET-1 induced an immediate rise in PAP with a maximum after 5 min (DeltaPAP 6.3 +/- 1.4 mmHg), leveling off at DeltaPAP 3.2 +/- 0.2 mmHg after 15 min. Pretreatment with BQ-123 failed to attenuate the increase. BQ-788 significantly reduced the peak pressure at 5 min (0.75 +/- 0.4 mmHg; P < 0.001) as well as the plateau pressure thereafter (P < 0.01). We conclude that ET-1 administration causes pulmonary vasoconstriction independent of basal vascular tone, and, at normal vascular tone, the vasoconstriction seems to be mediated via ET(A) receptors. BQ-788 treatment resulted in even more pronounced vasoconstriction. After pulmonary preconstriction, ET(A) antagonism exerted no effects on PAP, whereas ET(B) antagonism blocked the PAP increase. Therefore, ET-1-induced pulmonary vasoconstriction is shifted from an ET(A)-related to an ET(B)-mediated mechanism after pulmonary vascular preconstriction.  相似文献   

4.
Cardiovascular diseases are characterized by insulin resistance and elevated endothelin (ET)-1 levels. Furthermore, ET-1 induces insulin resistance. To elucidate this mechanism, six healthy subjects were studied during a hyperinsulinemic euglycemic clamp during infusion of (the ET-1 precursor) big ET-1 alone or after ET(A)- or ET(B)-receptor blockade. Insulin levels rose after big ET-1 with or without the ET(B) antagonist BQ-788 (P < 0.05) but were unchanged after the ET(A) antagonist BQ-123 + big ET-1. Infused glucose divided by insulin fell after big ET-1 with or without BQ-788 (P < 0.05). Insulin and infused glucose divided by insulin values were normalized by ET(A) blockade. Mean arterial blood pressure rose during big ET-1 with or without BQ-788 (P < 0.001) but was unchanged after BQ-123. Skeletal muscle, splanchnic, and renal blood flow responses to big ET-1 were abolished by BQ-123. ET-1 levels rose after big ET-1 (P < 0.01) in a similar way after BQ-123 or BQ-788, despite higher elimination capacity after ET(A) blockade. In conclusion, ET-1-induced reduction in insulin sensitivity and clearance as well as splanchnic and renal vasoconstriction are ET(A) mediated. ET(A)-receptor stimulation seems to inhibit the conversion of big ET-1 to ET-1.  相似文献   

5.
A paradoxical microcirculatory constriction has been observed in hearts of patients with ischemia, secondary to coronary stenosis. Here, using the isolated mouse heart (Langendorff), we examined the mechanism of this response, assuming involvement of nitric oxide (NO) and endothelin-1 (ET-1) systems. Perfusion pressure was maintained at 65 mmHg for 70 min (protocol 1), or it was reduced to 30 mmHg over two intervals, between the 20- and 40-min marks (protocol 2) or from the 20-min mark onward (protocol 3). In protocol 1, coronary resistance (CR) remained steady in untreated heart, whereas it progressively increased during treatment with the NO synthesis inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME) (2.7-fold) or the ET(A) antagonist BQ-610 (2.8 fold). The ET(B) antagonist BQ-788 had instead no effect by itself but curtailed vasoconstriction to BQ-610. In protocol 2, hypotension raised CR by 2.2-fold. This response was blunted by reactive oxygen species (ROS) scavengers (mannitol and superoxide dismutase plus catalase) and was converted into vasodilation by l-NAME, BQ-610, or BQ-788. Restoration of normal pressure was followed by vasodilation and vasoconstriction, respectively, in untreated and treated preparations. In protocol 3, CR progressively increased with hypotension in the absence but not presence of L-NAME or BQ-610. We conclude that the coronary vasculature is normally relaxed by two concerted processes, a direct action of NO and ET-1 curtailing an ET(B2)-mediated tonic vasoconstriction through ET(A) activation. The negative feedback mechanism on ET(B2) subsides during hypotension, and the ensuing vasoconstriction is ascribed to ET-1 activating ET(A) and ET(B2) and reactive nitrogen oxide species originating from ROS-NO interaction.  相似文献   

6.
Endothelin (ET) causes contraction of the muscularis mucosae in the guinea pig esophagus, but its role in the human esophagus remains unknown. To investigate effects of ET in the human esophagus, we measured contraction of isolated human esophageal muscularis mucosae strips caused by ET related peptides and binding of 125I-ET-1 to cell membranes prepared from the human esophageal muscularis mucosae. Autoradiography demonstrated specific binding of 125I-ET-1 to the muscularis mucosae and muscularis propria (muscularis externa) of the human esophagus. ET-1 caused tetrodotoxin and atropine-insensitive contraction of muscularis mucosae strips. In terms of the maximal tension of contraction, ET-1 and ET-2 were equal in efficacy. The relative potencies for ET related peptides to cause contraction were ET-1=ET-2>ET-3>sarafotoxin S6c (SX6c), an ETB receptor agonist. ET-1 caused contraction was mildly inhibited by BQ-123, an ETA receptor antagonist, and not by BQ-788, an ETB receptor antagonist. It was moderately inhibited by the combination of both antagonists, indicating synergistic inhibition. Furthermore, desensitization to SX6c with SX6c pretreatment failed to abolish the contractile response to ET-1, which was completely inhibited by BQ-123. These indicate the involvement of both ETA and ETB receptors in the contraction. Binding of 125I-ET-1 to cell membranes of the muscularis mucosae was saturable and specific. Analysis of dose-inhibition curves demonstrated the presence of ETA and ETB receptors. This study demonstrates that, the muscularis mucosae of the human esophagus, similar to that of the guinea pig esophagus, possesses both ETA and ETB receptors mediating muscle contraction.  相似文献   

7.
There is controversy on the role of endothelin (ET)-1 in the mechanism of hypoxic pulmonary vasoconstriction (HPV). Although HPV is inhibited by ET-1 subtype A (ET(A))-receptor antagonists in animals, it has been reported that ET(A)-receptor blockade does not affect HPV in isolated lungs. Thus we reassessed the role of ET-1 in HPV in both rats and isolated blood- and physiological salt solution (PSS)-perfused rat lungs. In rats, the ET(A)-receptor antagonist BQ-123 and the nonselective ET(A)- and ET(B)-receptor antagonist PD-145065, but not the ET(B)-receptor antagonist BQ-788, inhibited HPV. Similarly, BQ-123, but not BQ-788, attenuated HPV in blood-perfused lungs. In PSS-perfused lungs, either BQ-123, BQ-788, or the combination of both attenuated HPV equally. Inhibition of HPV by combined BQ-123 and BQ-788 in PSS-perfused lungs was prevented by costimulation with angiotensin II. The ATP-sensitive K(+) (K(ATP))-channel blocker glibenclamide also prevented inhibition of HPV by BQ-123 in both lungs and rats. These results suggest that ET-1 contributes to HPV in both isolated lungs and intact animals through ET(A) receptor-mediated suppression of K(ATP)-channel activity.  相似文献   

8.
There is evidence for an interaction between nitric oxide (NO) and endothelin (ET) at the level of the renal vasculature. We hypothesized that acute renal effects of systemic NO synthase inhibition (NG-monomethyl-l-arginine, L-NMMA) may be blunted by coadministration of a specific ET(A) receptor antagonist (BQ-123) in healthy humans. Fifteen healthy young male subjects participated in this randomized, double-blind, placebo-controlled 3-way crossover study. These sodium-repleted volunteers received L-NMMA alone, or BQ-123 alone, or L-NMMA with a subsequent coinfusion of BQ-123. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were determined with the PAH and inulin clearance method, respectively. Mean arterial pressure (MAP) and pulse rate were measured noninvasively at baseline and every 15 min after the start of the study period. L-NMMA alone reduced RPF (-22%, P < 0.001) and GFR (-8%, P < 0.009) and increased MAP (+10%, P < 0.001). BQ-123 alone did not affect these parameters. However, coinfusion of BQ-123 blunted the effects of L-NMMA on RPF (P < 0.001), GFR (P < 0.001), and MAP (P = 0.006). Peripheral and renal hemodynamic effects of acute systemic NO synthase inhibition are at least partially reversed by ET(A) receptor blockade with BQ-123. This indicates a functional antagonism between specific ET(A) receptor antagonist and NO synthase inhibitors at the level of the renal vasculature.  相似文献   

9.
Kassuya CA  Rogerio AP  Calixto JB 《Peptides》2008,29(8):1329-1337
In this study, we investigated the effects of the selective ET(A) (BQ-123) and ET(B) (BQ-788) receptor antagonists for endothelin-1 (ET-1) against several flogistic agent-induced paw edema formation and ovalbumin-induced allergic lung inflammation in mice. The intraplantar injection of BQ-123, but not BQ-788, significantly inhibited carrageenan-, PAF-, ET-1- and bradykinin-induced paw edema formation. The obtained inhibitions (1h after the inflammatory stimulus) were 79+/-5%, 55+/-4%, 55+/-6% and 74+/-4%, respectively. In carrageenan-induced paw edema, the mean ID(50) value for BQ-123 was 0.77 (0.27-2.23)nmol/paw. The neutrophil influx induced by carrageenan or PAF was reduced by BQ-123, with inhibitions of 55+/-2% and 72+/-4%, respectively. BQ-123 also inhibited the indirect macrophage influx induced by carrageenan (55+/-6%). However, BQ-788 failed to block the cell influx caused by either of these flogistic agents. When assessed in the bronchoalveolar lavage fluid in a murine model of asthma, both BQ-123 and BQ-788 significantly inhibited ovalbumin-induced eosinophil recruitment (78+/-6% and 71+/-8%), respectively. Neither neutrophil nor mononuclear cell counts were significantly affected by these drugs. Our findings indicate that ET(A), but not ET(B), selective ET-1 antagonists are capable of preventing the acute inflammatory responses induced by carrageenan, PAF, BK and ET-1. However, both ET(A) and ET(B) receptor antagonists were found to be effective in inhibiting the allergic response in a murine model of asthma.  相似文献   

10.
Endothelin (ET)-1 contributes to regulation of pulmonary vascular tone and structure in the normal ovine fetus and in models of perinatal pulmonary hypertension. The hemodynamic effects of ET-1 are due to activation of its receptors. The ET(A) receptor mediates vasoconstriction and smooth muscle cell proliferation, whereas the ET(B) receptor mediates vasodilation. In a lamb model of chronic intrauterine pulmonary hypertension, ET(B) receptor activity and gene expression are decreased. To determine whether prolonged ET(B) receptor blockade causes pulmonary hypertension, we studied the hemodynamic effects of selective ET(B) receptor blockade with BQ-788. Animals were treated with an infusion of either BQ-788 or vehicle for 7 days. Prolonged BQ-788 treatment increased pulmonary arterial pressure and pulmonary vascular resistance (P < 0.05). The pulmonary vasodilator response to sarafotoxin 6c, a selective ET(B) receptor agonist, was attenuated after 7 days of BQ-788 treatment, demonstrating pharmacological blockade of the ET(B) receptor. Animals treated with BQ-788 had greater right ventricular hypertrophy and muscularization of small pulmonary arteries (P < 0. 05). Lung ET-1 levels were threefold higher in the animals treated with BQ-788 (P < 0.05). We conclude that prolonged selective ET(B) receptor blockade causes severe pulmonary hypertension and pulmonary vascular remodeling in the late-gestation ovine fetus.  相似文献   

11.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

12.
The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.  相似文献   

13.
In the present study the role of endothelin (ET) and its receptors (ETA-R and ETB-R) in cellular mechanisms underlying the resistance of astroglial cells to low oxygen level and development of hypoxia has been investigated. To define the influences of ET and its receptors on survival and on antigenic as well as morphologic differentiation of rat astroglial cells in normoxic (NC) and hypoxic culture (HC) the selective antagonists of ETA-R (BQ-123) and ETB-R (BQ-788) were used. Treatment of HC with BQ-123 caused an increase in cell number and inhibited the hypoxia-induced apoptosis by 37%. BQ-123 decreased the hypoxia-induced cytotoxicity in HC. These effects of BQ-123 were abolished in cultures simultaneously treated with BQ-123 and BQ-788. Administration of BQ-788 alone decreased the number of living cells in NC, but not in HC. The activity of caspase-3/-7 was not changed by exposure of NC and HC to BQ-788. The protection provided by BQ-123 to astroglial cells against cytotoxicity in NC and HC was similar to that of erythropoietin (EPO), a cytokine with established neuroprotective effects. The functional improvement of astroglial cells and slowing down of their differentiation under exposure to BQ-123, or EPO, or BQ-123 + EPO has been evidenced by an increased number of nestin+/glial fibrillary acidic protein-positive (GFAP+) astrocytes accompanied by decrease of nestin-/GFAP+ cells. The simultaneous treatment with BQ-123 and EPO additionally decreased the activities of caspase-3/-7 (64%) and release of LDH into the medium (94%). The benefits in the functional states of astrocytes obtained by combined treatment of HC with BQ-123 and EPO suggest a new therapeutic strategy in treatment of hypoxic brain injury.  相似文献   

14.
Huang SC 《Regulatory peptides》2003,113(1-3):131-138
Endothelin (ET) causes contraction of the gallbladder. To investigate effects of ET in the common bile duct, we measured contraction of longitudinal muscle strips from guinea pig common bile ducts induced by ET-related peptides and binding of 125I-ET-1 to cell membranes prepared from the common bile duct. Visualization of 125I-ET-1 binding sites in tissue was performed by autoradiography. ET-1 caused tetrodotoxin and atropine-insensitive contraction. In terms of maximal tension of contraction, ET-1, ET-2 and ET-3 were equal in efficacy. However, sarafotoxin S6c, a selective ET(B) receptor agonist, caused only a negligible contraction. The relative potencies for ET isopeptides to cause contraction were ET-1=ET-2>ET-3. The ET-1-induced contraction was inhibited by BQ-123, an ET(A)-receptor-selective antagonist, but not by BQ-788, an ET(B)-receptor-selective antagonist. In addition, the combination of both antagonists, BQ-123 and BQ-788, inhibited ET-1 induced contraction but did not potentiate the inhibition caused by BQ-123 alone. These indicate that ET(A) but not ET(B) receptors mediate the contraction. Autoradiography localized 125I-ET-1 binding to the smooth muscle layer. Binding of 125I-ET-1 to the smooth muscle cell membranes was saturable and specific. Analysis of dose-inhibition curves indicated the presence of ET(A) and ET(B) receptors. These results demonstrate that ET causes contraction of longitudinal muscle of the common bile duct. Different from the gallbladder, which possesses both ET(A) and ET(B) receptors cooperating to mediate muscle contraction, the common bile duct possesses two classes of ET receptors, but only the ET(A) receptor mediates the contraction.  相似文献   

15.
We investigated the possible role of p38 MAPK and ETB receptors in ET-1 induction of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in cultured feline esophageal smooth muscle cells (ESMC). Confluent layers of ESMC were stimulated with 10 nM ET-1 and expression of COX-1 and COX-2, involvement of receptors, and activation of p38 MAPK, were examined by Western blot analysis. Levels of PGE2 induced by ET-1 were measured by Elisa. Using ETA and ETB antagonists (BQ-123 and BQ-788, respectively), the contribution of the ET receptors to COX-1 and COX-2 expression induced by ET-1 was determined. Western blot analysis revealed that treatment of ESMC with ET-1 resulted in transient expression of COX-2 and activation of p38 MAPK. Activation of p38 MAPK was maximal after 1 h. SB202190, a p38 MAPK inhibitor, reduced expression of COX-2, but not COX-1. ET-1-induced release of PGE2 was also blocked by SB202190. COX-2 expression was upregulated only via the ETB receptor, and COX-1 expression was not affected by either antagonist. Taken together, our data suggest that ET-1 causes p38 MAPK-dependent expression of COX-2 by interacting with ETB receptors on ESMC.  相似文献   

16.
We previously suggested that the profound, sustained vasoconstriction noted in 3-day-old swine intestine after a moderate episode of ischemia-reperfusion (I/R) reflects the unmasking of underlying constrictor tone consequent to a loss of endothelium-derived nitric oxide (NO). In this study, we sought to determine whether endothelin-1 (ET-1) was the unmasked constrictor and whether selective loss of endothelial ET(B) receptors, which mediate NO-based vasodilation, participated in the hemodynamic consequences of I/R in newborn intestine. Studies were performed in innervated, autoperfused intestinal loops in 3- and 35-day-old swine. Selective blockade of ET(A) receptors with BQ-610 had no effect on hemodynamics under control conditions; however, when administered before and during I/R, BQ-610 significantly attenuated the post-I/R vasoconstriction and reduction in arteriovenous O(2) difference in the younger group. In 3-day-old intestine, reduction of intestinal O(2) uptake to a level similar to that noted after I/R by lowering tissue temperature had no effect on the response to BQ-610 or ET-1, indicating that the change in response to BQ-610 noted after I/R was not simply consequent to the reduction in tissue O(2) demand. In studies in mesenteric artery rings suspended in myographs, we observed a leftward shift in the dose-response curve for ET-1 after selective blockade of ET(B) receptors with BQ-788 in 3- but not 35-day-old swine. Rings exposed to I/R in vivo behaved in a manner similar to control rings treated with BQ-788 or endothelium-denuded non-I/R rings.  相似文献   

17.
An increase in coronary perfusion pressure leads to increased cardiac contractility, a phenomenon known as the Gregg effect. Exogenous endothelin (ET)-1 exerts a positive inotropic effect; however, the role of endogenous ET-1 in the contractile response to elevated load is unknown. We characterized here the role of ETA and ETB receptors in regulation of contractility in isolated, perfused mouse hearts subjected to increased coronary flow. Elevation of coronary flow from 2 to 5 ml/min resulted in 80 +/- 10% increase in contractile force (P < 0.001). BQ-788 (ETB receptor antagonist) augmented the load-induced contractile response by 35% (P < 0.05), whereas bosentan (ETA/B receptor antagonist) and BQ-123 (ETA receptor antagonist) attenuated it by 34% and 56%, respectively (P < 0.05). CV-11974 (ANG II type 1 receptor antagonist) did not modify the increase in contractility. These results show that endogenous ET-1 is a key mediator of the Gregg effect in mouse hearts. Moreover, ET-1 has a dual role in the regulation of cardiac contractility: ETA receptor-mediated increase in contractile force is suppressed by ETB receptors.  相似文献   

18.
Our recent study [Danielyan et al., 2005. Eur. J. Cell Biol. 84, 567-579] showed an additive protective effect of endothelin (ET) receptor A (ETA-R) blockade and erythropoietin (EPO) on the survival and rejuvenation of rat astroglial cells exposed to hypoxia. Whether the effects observed with rodent astroglial cells can be reproduced in human astrocytes and whether these effects of ETA-R blockade and EPO on astrocytes are associated with neuronal survival remained open. Therefore, in the present study, the effects of the ETA-R antagonist BQ-123 and EPO on the maintenance of the neuronal population and survival of the human fetal astroglial cell line (SV-FHAS) under normoxic and hypoxic conditions (NC and HC, respectively) were investigated. Rat brain primary cultures exposed to BQ-123 and/or EPO revealed an increase in the number of beta-III tubulin-positive neurons under NC. The hypoxia-caused loss of neurons was abolished by administration of BQ-123 or EPO. Simultaneous application of EPO and BQ-123 led to an additive protective effect on the generation of neurons under NC only. By contrast, BQ-788, the selective ETB-R antagonist, diminished the neuronal population both in NC and HC. Both under NC and HC the number of non-differentiated nestin+/GFAP- neural cells increased upon application of EPO or BQ-123. SV-FHAS responded to BQ-123 or EPO by a decrease in LDH activity in the culture medium under NC (35%) and HC (26% LDH decrease). Concomitant effects of EPO and BQ-123 were illustrated in an additional increase in the survival of human astrocytes (33% under NC and 17% under HC). These data hint at a neuroprotective therapeutic potency of ETA-R blockade, which either alone or in combination with EPO may improve the survival of astroglial and neuronal cells upon hypoxic injury.  相似文献   

19.
A linear endothelin (ET) analog, N-acetyl-LeuMetAspLysGluAlaValTyrPheAlaHisLeu-AspIleIleTrp (BQ-3020), is highly selective for ETB receptors. BQ-3020 displaces [125I]ET-1 binding to ETB receptors (nonselective to ET isopeptides) in porcine cerebellar membranes (IC50: 0.2nM) at a concentration 4,700 times lower than that to ETA receptors (selective to ET-1) on aortic vascular smooth muscle cells (VSMC) (IC50: 940nM). BQ-3020 as well as ET-1 and ET-3 elicits vasoconstriction in the rabbit pulmonary artery. The ETA antagonist BQ-123 failed to inhibit this BQ-3020-induced vasoconstriction. Furthermore, BQ-3020 elicits endothelium-dependent vasodilation. These data indicate that BQ-3020 has ETB agonistic activity. The radioligand [125I]BQ-3020 binds to cerebellar membranes at single high affinity sites (Kd = 34.4pM), whereas it scarcely binds to VSMC. [125I]BQ-3020 binding to the cerebellum was displaced by BQ-3020, ET-1 and ET-3 in a nonselective manner (IC50: 0.07-0.17nM). However, the binding of [125I]BQ-3020 was insensitive to the ETA antagonist BQ-123 and other bioactive peptides. Both [125I]ET-1 and [125I]BQ-3020 show slow onset and offset binding kinetics to ETB receptors. These data indicate that the radioligand [125I]BQ-3020 selectively labels ETB receptors and that the slow binding kinetics of ET-1 are dependent on the peptide sequence from Leu6 to Trp21, but not on the structure formed by its two disulfide bridges.  相似文献   

20.
The proliferative effects of endothelin-1 (ET-1), both alone and in combination with epidermal growth factor (EGF), and the effect of nitric oxide (NO) on the cell proliferation were investigated in cultured guinea pig bronchial smooth muscle cells. ET-1 (10-100 nM) alone augmented cell proliferation, and was additive to the effect of EGF (0.48 nM) in a concentration-dependent manner. An ET(A) antagonist, BQ-123 (10 microM), reduced the cell-proliferative effect of ET-1, whereas an ET(B) antagonist, BQ-788 (10 microM), did not influence the effect. A NO donor, SIN-1 (10 nM-1 microM), reduced the cell-proliferative effect of ET-1 in a concentration-dependent manner. The effect of SIN-1 (1 microM) was partly, but significantly, reversed by a soluble guanylyl cyclase inhibitor, ODQ (1 microM). These results suggest that ET-1 acts not only as a co-mitogen with EGF but also as a mitogen alone, and that its action is mediated through activation of ET(A) receptors. Therefore, ET-1 may contribute to airway remodeling, a pathophysiological hallmark of asthma. In addition, NO, which is produced mainly in the airway epithelium and is partly mediated through cGMP-dependent pathway, may reduce the phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号