首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
Kazuhiko Satoh 《BBA》1981,638(2):327-333
Effects of medium osmolarity on the rate of CO2 fixation, the rate of the NADP+-Hill reaction, and the DPS1 transient of chlorophyll fluorescence were measured in intact Bryopsis chloroplasts. Upon decreasing the sorbitol concentration from 1.0 M (the isoosmotic conditions) to 0.25 M, the envelopes of the chloroplasts became leaky to small molecules, resulting in a considerable depression of the CO2-fixation rate and a higher rate of the NADP+-Hill reaction whereas the DPS1 transient was unaffected. This DPS1 transient of chlorophyll fluorescence is thought to be caused by the photoactivation of electron flow on the reducing side of Photosystem I at a site occurring after ferredoxin and probably before the reduction of NADP+ (Satoh, K. and Katoh, S. (1980) Plant and Cell Physiol. 21, 907–916). Little effect of NADP+ on the DPS1 transient and a marked lag in NADP+ photo-reduction in dark-adapted (inactivated) chloroplasts support the hypothesis that the site of dark inactivation is prior to the reduction site of NADP+, and therefore, that ferredoxin-NADP+ reductase is inactivated in the dark and activated in the light. Moreover, at 0.25 M sorbitol, the activity of ferredoxin-NADP+ reductase itself (2,6-dichlorophenolindophenol reduction by NADPH) was shown to increase according to dark-light transition of the chloroplasts. At low osmolarities (below 0.1 M sorbitol), the difference in the diaphorase activity between dark-and light-adapted chloroplasts and the lag time observed in the NADP+ photoreduction were lowered. This may correspond to a less pronounced DPS1 transient at low concentrations of sorbitol. The mechanism of the photo-activation is discussed.  相似文献   

2.
Eosin isothiocyanate was covalently bound to isolated ferredoxin-NADP+ reductase under protection of the NADP-binding domain. The bound label did not impair the functional reconstitution of the enzyme into depleted thylakoid membranes. Laser spectrophotometric experiments were carried out on thylakoids which were reconstituted with labeled ferredoxin-NADP+ reductase. Bound eosin isothiocyanate was used as a spectroscopic probe for conformational changes of ferredoxin-NADP+ reductase in either of two ways: We studied the rotational diffusion of labeled ferredoxin-NADP+ reductase in the membrane by the photoselection technique, and we studied the triplet lifetime of bound eosin, which measures polypeptide chain flexibility (via access of oxygen) around the binding site. The latter technique was complemented by measurements of the librational motion of bound dye. We observed: (1) When ferredoxin is absent, ferredoxin-NADP+ reductase undergoes very rapid rotational diffusion in the thylakoid membrane (correlation time less than 1 μs at 10°C). This is drastically slowed down (40 μs) upon addition of water-soluble ferredoxin. We propose that ferredoxin mediates the formation of a ternary complex with ferredoxin-NADP+ reductase and the Photosystem I complex. According to our data, this complex would live longer than required for the photoreduction of ferredoxin-NADP+ reductase by Photosystem I via ferredoxin. (2) Under the given incubation conditions, the binding sites for eosin isothiocyanate were located in the FAD domain of ferredoxin-NADP+ reductase. We found increased chain flexibility in this domain upon addition of NADP. This suggests induced fit for the binding of NADP and allosteric control of the FAD domain by the remote NADP domain. (3) Acidification of the internal phase of thylakoids decreased the chain flexibility in the FAD domain. This is of particular interest, since ferredoxin-NADP+ reductase is a peripheral external membrane protein. It suggests the existence of a binding protein for the oxidoreductase which spans the membrane and senses the internal pH  相似文献   

3.
Akira Kusai  Tateo Yamanaka 《BBA》1973,292(3):621-633
A highly purified preparation of an NAD(P) reductase was obtained from Chlorobium thiosulfatophilum and some of its properties were studied. The enzyme possesses FAD as the prosthetic group, and reduces benzyl viologen, 2,6-dichloro-phenolindophenol and cytochromes c, including cytochrome c-555 (C. thiosulfato-philum), with NADPH or NADH as the electron donor. It reduces NADP+ or NAD+ photosynthetically with spinach chloroplasts in the presence of added spinach ferredoxin. It reduces the pyridine nucleotides with reduced benzyl viologen. The enzyme also shows a pyridine nucleotide transhydrogenase activity. In these reactions, the type of pyridine nucleotide (NADP or NAD) which functions more efficiently with the enzyme varies with the concentration of the nucleotide used; at concentrations lower than approx. 1.0 mM, NADPH (or NADP+) is better electron donor (or acceptor), while NADH (or NAD+) is a better electron donor (or acceptor) at concentrations higher than approx. 1.0 mM. Reduction of dyes or cytochromes c catalysed by the enzyme is strongly inhibited by NADP+, 2′-AMP and and atebrin.  相似文献   

4.
Ahlert Schmidt  Achim Trebst 《BBA》1969,180(3):529-535
The reduction of sulfate by isolated spinach chloroplasts was studied. A reconstituted system of broken chloroplasts and of chloroplast extract reduced sulfate to sulfite in the light when ADP, NADP+, ferredoxin and glutathione were added. The chloroplast extract reduced sulfate to sulfite in the dark if supplemented with ATP and with reduced glutathione. Neither ferredoxin nor NADPH were needed for this reduction in the dark.

A sulfite reductase was purified from spinach leaves. Broken chloroplasts and sulfite reductase reduced sulfite to sulfide in the light when ferredoxin was added. NADP+ was not required for this reduction.

The results suggest that in chloroplasts a sulfate activated by ATP (phosphoadenosine phosphosulfate) is reduced to sulfite by a sulfhydryl compound and that sulfite is reduced to sulfide by a ferredoxin-dependent sulfite reductase.  相似文献   


5.
From studies of electron-transport reactions of isolated spinach chloroplasts, we observe the following quantum requirements: (A) For the photoreduction of NADP+, measured both aerobically and anaerobically, in a 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) poisoned system with ascorbate and reduced 2,6-dichlorophenolindophenol (DCIPH2) present as electron donors, the quantum requirements are 1.0 ± 0.05 at wavelengths longer than 700 nm of actinic light, and 1.5–2.5 for wavelengths between 620 and 680 nm. (B) For the photoreduction of 2,6-dichlorophenolindophenol (DCIP) with water as the electron donor, the quantum requirements are 1.0 ± 0.05 in the range 630–660 nm. (C) For the photoreduction of NADP+ with water as the electron donor, the quantum requirements are 2.0 ± 0.1 in the wavelength range 640–678 nm of actinic light, increasing to 6 or greater at wavelengths beyond 700 nm. These results are shown to be inconsistent with the “separate package” model for the two pigment systems in higher plant photosynthetic electron transport. The evidence is most easily interpreted using a “controlled spillover” model, in which the transfer of electronic excitation energy from one pigment system to the other is under the control of incompletely identified factors in the reaction mixture.

At moderate light intensities the steady state rate of the [ascorbate + DCIPH2NADP+] reaction (A) in the presence of DCMU and added ferredoxin can be increased more than 3 times when saturating amounts of plastocyanin and ferredoxin-NADP reductase are added to the chloroplasts. Similarly, the steady-state rate of the [H2O → DCIP] Hill reaction (B) is increased about 3-fold by added MgCl2 and plastocyanin, but added ferredoxin or ferredoxin-NADP reductase have no effect on this reaction. Plastocyanin appears to be the electron transport component which couples to DCIP, either in the oxidized or in the reduced form, in the reaction media. The steady-state rate of the [H2O → NADP+] reaction (C) with saturating amounts of ferredoxin can be further increased more than 3-fold when MgCl2, plastocyanin and ferredoxin-NADP reductase are added.  相似文献   


6.
Evidence has been obtained that NADPH may serve as a physiological source of reducing power for nitrogenase activity in Azotobacter vinelandii. NADH was ineffective. Electron transfer from NADPH to nitrogenase depended on four factors native to A. vinelandii cells: azotobacter ferredoxin, azotoflavin, a component replaceable by spinach ferredoxin-NADP+ reductase and another soluble, heat-labile component not yet chemically characterized. The four factors probably constitute an electron transport chain between NADPH and nitrogenase.  相似文献   

7.
Pyridine nucleotide transhydrogenase is a metabolic enzyme transferring the reducing equivalent between two nucleotide acceptors such as NAD+ and NADP+ for balancing the intracellular redox potential. Soluble transhydrogenase (STH) of Azotobacter vinelandii was expressed in a recombinant Saccharomyces cerevisiae strain harboring the Pichia stipitis xylose reductase (XR) gene to study effects of redox potential change on cell growth and sugar metabolism including xylitol and ethanol formation. Remarkable changes were not observed by expression of the STH gene in batch cultures. However, expression of STH accelerated the formation of ethanol in glucose-limited fed-batch cultures, but reduced xylitol productivity to 71% compared with its counterpart strain expressing xylose reductase gene alone. The experimental results suggested that A. vinelandii STH directed the reaction toward the formation of NADH and NADP+ from NAD+ and NADPH, which concomitantly reduced the availability of NADPH for xylose conversion to xylitol catalyzed by NADPH-preferable xylose reductase in the recombinant S. cerevisiae.  相似文献   

8.
M. Miginiac-Maslow 《BBA》1971,234(3):353-359
Whole spinach chloroplasts were able to perform photophosphorylation under nitrogen without the addition of any redox cofactor. This “endogenous” phosphorylation was totally insensitive to 3-(p-chlorophenyl)-1,1-dimethylurea. After osmotic shock endogenous ATP formation decreased but the addition of 3-(p-chlorophenyl)-1,1-dimethylurea stimulated it.

Under a stream of nitrogen, whole chloroplasts reduced NADP+ after an osmotic shock, in the absence of added ferredoxin. The resulting ATP/NADPH ratios were high (approx. 2 or 3). They decreased to 1 in the presence of either exogenous ferredoxin, 3-(p-chlorophenyl)-1,1-dimethylurea or limiting light: i.e. high ATP/NADPH ratios were observed only when the terminal step of NADP+ reduction was limiting.

The endogenous anaerobic phosphorylation was inhibited by antimycin A to the same extent as the O2-dependent endogenous non-cyclic phosphorylation.

A direct inhibition of electron transport by antimycin A has never been observed.  相似文献   


9.
A range of heteropentalene and bipyridinium compounds have been tested as catalysts of electron transfer to oxygen from spinach ferredoxin-NADP+ oxidoreductase reduced by NADPH. For a particular class of compound, the rate of oxygen reduction increased with increasing midpoint potential of the compound under conditions in which reduction of the compound was rate-limiting. Compounds with similar midpoint potentials from different structural classes showed marked differences in rate, attributed to specificity in the interaction with ferredoxin-NADP+ oxidoreductase.  相似文献   

10.
Interaction of ferredoxin-NADP+ reductase from Anabaena with its substrates   总被引:1,自引:0,他引:1  
The interaction of ferredoxin-NADP+ reductase from the cyanobacterium Anabaena variabilis with its substrates, NADP+ and ferredoxin, has been studied by difference absorption spectroscopy. Several structural analogs of NADP+ have been shown to form complexes the stabilities of which are strongly dependent on the ionic strength of the medium. In most cases the binding energy of these complexes and their difference absorption spectra are similar to those reported for the spinach enzyme. However, NADP+ perturbs the absorption spectra of the Anabaena and spinach enzymes in a different way. This difference has been shown to be related to the binding of the nicotinamide ring of NADP+ to the enzymes. These results are interpreted as being due to a different nicotinamide binding site in the two reductases. The enthalpic and entropic components of the Gibbs energy of formation of the NADP+ complex have been estimated. An increase in entropy on NADP+ binding seems to be the main source of stability for the complex. A shift of approximately 40 mV in the redox potential of the couple NADP+/NADPH has been observed to occur upon binding of NADP+ to the oxidized enzyme. This allows us to calculate the binding energy between the reductase and NADPH. The ability of the reductase, ferredoxin, and NADP+ to form a ternary complex indicates that the protein carrier binds to the reductase through a different site than that of the pyridine nucleotide.  相似文献   

11.
Ferredoxin-NADP reductase accounts for about 50% of the NADPH diaphorase activity of spinach leaf homogenates. The enzyme is bound to thylakoid membranes, but can be slowly extracted by aqueous buffers. Ferredoxin-NADP reductase can be extracted from the membranes by a 1- to 2-min treatment with a low concentration of trypsin. This treatment completely inactivates NADP photoreduction but does not affect electron transport from water to ferredoxin. It is shown that the inactivation is due to solubilization of ferredoxin-NADP reductase: the activity can be restored by addition of a very large excess of soluble enzyme in pure form. When ferredoxin-NADP reductase is added as a soluble enzyme after extraction or inactivation (by a specific antibody) of the membrane-bound enzyme, NADP photoreduction requires a very large excess of this enzyme, and the apparent Km for ferredoxin is also increased. These observations are discussed as related to the interactions of thylakoids with ferredoxin-NADP reductase.  相似文献   

12.
An improved and standardized procedure for isolation of chloroplast particles from the unicellular green alga, Scenedesmus obliquus, D3, is described. The method is generally applicable to heterotrophically- and autotrophically-grown cells of Scenedesmus as well as to Chlamydomonas reinhardti and Chlorella sorokiniana (7-11-05) cultures. Chloroplast particles with high NADP+ photoreducing capacity are obtained from heterotrophic cultures only when the cell types are random and the culture is in the logarithmic growth phase; maximal rates of 240–260 μmoles NADP+ reduced/h per mg chlorophyll are achieved. Optimal conditions for separation of such chloroplast particles require the use of Tricine buffer (20 mM, pH 7.5), 50 nM EDTA, 10 mM KCl and 0.5 mM dithiothreitol in the breaking medium; for the maintenance of high photochemical activity it is necessary to store particles in a solution consisting of 0.4 M sucrose, 30 mM KCl and 1% bovine serum albumin.

Optimum reaction conditions were developed and the properties of the isolated particles investigated. Maximal activities are obtained when the sucrose concentration is maintained below 0.4 M; the pH optimum with Tricine buffer is between 7.8–8.1; and at least 30 mM Cl is required. Red actinic light (wavelength >620 nm) with an intensity of 106 ergs/cm2 per s is required for saturation.

Ferrodoxin and ferredoxin-NADP+ oxidoreductase are lost from the particles during the preparatory procedures and maximum photochemical activity is attained only when they are added back in balanced amounts. Stimulatory effects of added plastocyanin and cytochrome c-553 are noted only with particles having an initially low photochemical activity.  相似文献   


13.
Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibition. Heparin also interfered with NADPH oxidation by membrane-bound ferredoxin-NADP reductase (with dichlorophenol-indophenol as the acceptor) by a mechanism that involves partial competitive inhibition. This reaction was sensitive to the presence of salts; increasing ionic strength increases the heparin Ki for inhibition of NADPH oxidation. These results show that heparin binds to ferredoxin-NADP reductase, and in doing so interferes with binding to the reductase by both ferredoxin and NADP(H). Since heparin is redox inactive and does not interfere with the photophosphorylation reaction, it is a useful inhibitor of thylakoid membrane reactions which require the catalytic activity of ferredoxin-NADP reductase.  相似文献   

14.
David B. Knaff  Daniel I. Arnon 《BBA》1971,226(2):400-408
Light-induced absorbance changes of cytochrome b559 and C550 in chloroplasts indicate that noncyclic electron transport from water to ferredoxin (Fd)-NADP+ is carried out solely by System II and includes not one but two photoreactions (IIa and IIb) that proceed effectively only in short-wavelength light. (C550 is a new chloroplast component identified by spectral evidence and distinct from cytochromes.) The evidence suggests that the two short-wavelength light reactions operate in series, being joined by a System II chain of electron carriers that includes (but is not limited to) C550, cytochrome b559, and plastocyanin (PC).

H2O → IIbhv → C550 → cyt. b559 → PC → IIahv → Fd → NADP+

Photoreaction IIb involves an electron transfer from water to C550 that does not require plastocyanin and is the first known System II photoreaction resistant to inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and o-phenanthroline. Cytochrome b559 is reduced by C550 in a reaction that is readily inhibited by DCMU or o-phenanthroline. Thus, the site of DCMU (and o-phenanthroline) inhibition of System II appears to lie between C550 and cytochrome b559. Photoreaction IIa involves an electron transfer from cytochrome b559 and plastocyanin to ferredoxin-NADP+.  相似文献   


15.
Novel forms of ferredoxin and ferredoxin-NADP reductase from spinach roots   总被引:5,自引:0,他引:5  
Ferredoxin and the enzyme catalyzing its reduction by NADPH, ferredoxin-NADP reductase (ferredoxin-NADP+ oxidoreductase or FNR), were found to be present in roots of spinach (Spinacia oleracea). Localization experiments with endosperm of germinating castor beans (Ricinus communis), a classical nonphotosynthetic tissue for cell fractionation studies, confirmed that ferredoxin and FNR are localized in the plastid fraction. Both proteins were purified from spinach roots and found to resemble their leaf counterparts in activity, spectral properties, and complex formation, but to differ in amino acid composition and amino terminal sequence. The results indicate that the primary structures of the FNR and ferredoxin of spinach roots differ from that of the corresponding leaf proteins. Together with earlier findings, the present results provide evidence that nonphotosynthetic plastids, including those of roots, are capable of reducing ferredoxin with heterotrophically generated NADPH.  相似文献   

16.
Reaction of spinach leaves ferredoxin-NADP+ reductase (NADPH:ferredoxin oxidoreductase, EC 1.6.7.1) with alpha-dicarbonyl compounds results in a biphasic loss of activity. The rapid phase yields modified enzyme with about 30% of the original activity, but no change in the Km for NADPH. Only partial protection against inactivation is provided by NADP+, NADPH and their analogs, whereas ferredoxin affords complete protection. The reductase inactivated to 30% of original activity shows a loss of about two arginyl residues, whereas only one residue is lost in the NADP+-protected enzymes. The data suggest that the integrity of at least two arginyl residues are requested for maximal activity of ferredoxin-NADP+ reductase: one residue being located near the NADP+-binding site, the other presumably situated in the ferredoxin-binding domain.  相似文献   

17.
The conjugated redox reaction was driven across the electron transfer membrane prepared from a urethane prepolymer to carry positive charge, where NADP+ as electron transfer carrier was adsorbed in the prepared polyurethane membrane. Glutathione reductase [NAD (P)H: oxidized-glutathione oxidoreductase (EC 1.6.4.1)] was used as the catalyst for production of the reduced form of glutathione (GSH) from the oxidized form (GSSG) in the objective reaction, and methyl viologen (MV) was used for the electrochemical regeneration of NADPH in the subreaction. The conjugated redox reaction in the separated reactions system, using the three-compartment cell with two membranes, was successful without MV contamination. Under the given conditions, the conversion ratio of GSH from GSSG reached 50% after 4 h of incubation at 30°C and the amount of GSH accumulated was 0.5 μmol ml−1 of reaction mixture.  相似文献   

18.
Richard Maskiewicz  Benon H.J. Bielski   《BBA》1982,680(3):297-303
It has been shown by the pulse radiolysis technique that radiation-generated NADP free radicals (NADP·) first combine with ferredoxin-NADP reductase and then transfer the odd electron by a fast intramolecular process to the enzyme flavin moiety yielding the semiquinone (ferredoxin-NADP reductase, FNR-FADH·). The corresponding first-order rate constant k15 varies with ionic strength from 2.6·103 s−1 at I = 0.66 M to 2.3·104 s−1 at I = 0.005 M In the presence of ferredoxin-NADP reductase-bound oxidized ferredoxin, the electron cascades, thus further reducing the ferredoxin. The transfer of the electron from the flavin semiquinone (ferredoxin-NADP reductase, FNR-FADH·) to the bound oxidized ferredoxin proceeds at a rate of k18 = 2.36 s−1. This process approaches an equilibrium condition which is in favor of the reverse reaction suggesting that k−18 > k18.  相似文献   

19.
Mercury resistance determinants in bacteria are often plasmid-borne or transposon-mediated. Mercuric reductase, one of the proteins encoded by the mercury resistance operon, catalyses a unique reaction in which mercuric ions, Hg (II), are reduced to mercury metal Hg(O) using NADPH as a source of reducing power. Mercuric reductase was purified from Azotobacter chroococcum SS2 using Red A dye matrix affinity chromatography. Freshly purified preparations of the enzyme showed a single band on polyacrylamide gel electrophoresis under non-denaturing conditions. After SDS-polyacrylamide gel electrophoresis of the freshly prepared enzyme, two protein bands, a major and a minor one, were observed with molecular weight 69 000 and 54 000, respectively. The molecular weight of the native enzyme as determined by gel filtration in Sephacryl S-300 was 142 000. The Km of Hg2+-reductase for HgCl2 was 11·11 μmol l−1. Titration with 5,5'-dithiobis (2-nitrobenzoate) demonstrated that two enzyme–SH groups become kinetically accessible on reduction with NADPH.  相似文献   

20.
Ferredoxin-NADP+ reductase and ferredoxin from the cyanobacterium Anabaena PCC 7119 have been covalently cross-linked by incubation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The covalent adduct, which shows a molecular mass consistent with a 1:1 stoichiometry of the two proteins, maintains nearly 60% of the NADPH-cytochrome c reductase activity of the enzyme saturated with ferredoxin and this value is considerably higher than when equimolar amounts of both proteins are assayed. No ternary complexes with Anabaena flavodoxin or horse heart cytochrome c were formed, suggesting that the binding site on the enzyme is the same for ferredoxin and flavodoxin and that ferredoxin-NADP+ reductase and cytochrome c bind at a common site on ferredoxin. In the noncovalent complex, titrated at pH 7, the oxidation-reduction potential of ferredoxin becomes 15 mV more negative and that of ferredoxin-NADP+ reductase 27 mV more positive compared to the proteins alone. When covalently linked, the midpoint potential of the enzyme has a value similar to that in the noncovalent complex, while the ferredoxin potential is 20 mV more positive compared to ferredoxin alone. The changes in redox potentials have been used to estimate the dissociation constants for the interaction of the different redox forms of the proteins, based on the value of 1.21 microM calculated for the oxidized noncovalent complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号