首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Unlike most primates, extant cercopithecoids lack maxillary sinuses, which are pneumatic spaces in the facial skeleton lateral of the nasal cavity proper. Character state analysis of living cercopithecoids across well-supported topologies suggests that the sinus was lost at the origin of the superfamily, only to have evolved again convergently in extant macaques. Recent work has shown that a) the 'early loss' hypothesis is supported by the lack of any pneumatization in Victoriapithecus, a stem cercopithecoid, b) like extant macaques, the fossil cercopithecine Paradolichopithecus shows evidence of presence of the maxillary sinus (MS), and c) unlike extant colobines, the fossil colobine Libypithecus also possesses a maxillary sinus. To more fully assess the pattern of cercopithecoid sinus evolution, fossil taxa from both subfamilies (Colobinae, Cercopithecinae) were examined both visually and by computed tomography (CT). The observations were evaluated according to standard anatomical criteria for defining sinus spaces, and compared with data from all extant Old World monkey genera. Most taxa examined conformed to the pattern already discerned from extant cercopithecoids. Maxillary sinus absence in Theropithecus oswaldi, Mesopithecus, and Rhinocolobus is typical for all extant cercopithecids except Macaca. The fossil macaque Macaca majori possesses a well-developed maxillary sinus, as do all living species of the genus. Cercopithecoides, on the other hand, differs from all extant colobines in possessing a maxillary sinus. Thus, paranasal pneumatization has reemerged a minimum of two and possibly three times in cercopithecoids. The results suggest that maxillary sinus absence in cercopithecoids is due to suppression, rather than complete loss.  相似文献   

2.
Macaques (genus Macaca) are unique among cercopithecids in that they possess a maxillary sinus, and among anthropoids in that they demonstrate a relatively weak relationship between the size of this sinus and the cranium. To test the hypothesis that extrinsic factors may contribute to maxillary sinus size variation, a sample of 46 Japanese macaque (M. fuscata) crania from known localities were subjected to computed tomography (CT) imaging, and sinus volume and nasal cavity area were analyzed relative to latitude and temperature variables. The results suggest that the environmental factors are significant determinants of nasal cavity size in Japanese macaques, but that the relationships between the environment and maxillary sinus volume (MSV) are probably a passive consequence of changes in the size of the nasal cavity. The sinus shrinks as the nasal cavity expands, due to an increased need to condition inspired air in colder climates. This in turn suggests that the sinus itself does not contribute significantly to upper respiratory function.  相似文献   

3.
Understanding the evolutionary significance of morphological diversity is a major goal of evolutionary biology. Paranasal sinuses, which are pneumatized hollow spaces in the face, have attracted attention from researchers as one of the most intriguing traits that show unexpected variations. Macaques are one genus of primates that have accomplished adaptive radiation and therefore present an excellent opportunity to investigate the phenotypic diversification process. Using the large data set of computed tomography images of macaques (172 specimens from 17 species), we applied geometric morphometrics and multivariate analyses to quantitatively evaluate the maxillary sinus (one of the largest paranasal sinuses), the outer craniofacial shape, and nasal cavity. We then applied phylogenetic comparative methods to test their morphological interactions, phylogenetic, and ecogeographical significances. The results showed that the relative maxillary sinus size was significantly associated with the relative nasal cavity size and with the zygomaxillary surface shape. The relative nasal cavity size had ecogeographical correlations and high phylogenetic signal, whereas the zygomaxillary surface shapes were ecogeographically and phylogenetically irrelevant. The significant interactions with multiple surrounding traits that have experienced different evolutionary processes probably enable the maxillary sinus to show enigmatic diversity, which is independent of phylogeny and ecology. The pliable nature of the maxillary sinus, which is positioned between the nasal airways and the outer face, may play a role as a spatial compromise in craniofacial modifications.  相似文献   

4.
The Schneider membrane is the mucosa that covers the inner part of the maxillary sinus cavities. The free surface is a ciliated pseudostratified epithelium, while the deeper portion is a highly vascularized connective tissue. The stromal fraction, bordering the bony wall of the sinus, after tooth loss can exhibit increased osteoclastic activity resulting in resorption of the bone in the posterior maxilla. Goal of our study was to isolate and characterize mesenchymal progenitors in the Schneider's membrane connective net and to evaluate their self ability to differentiate toward osteoblastic lineage, in absence of osteoinductive factors and osteoconductive biomaterials of support. This should indicate that maxillary sinus membrane represents an useful an approachable source of MSCs for bone tissue engineering and cell therapy and owns the intrinsic capacity to restore maxillary bone after tooth loss without the needing of biomaterials.  相似文献   

5.
M Michejda 《Acta anatomica》1975,91(1):110-117
Cross-sectional studies of the degree of the cranial base flexion were carried out in infant, juvenile and adult skulls in four genera of nonhuman primates (P. paniscus, H. lar, P. urinus, and M. mullatta). The cephalometric observations of the cranial base included linear and angular measurements of each specimen. The data obtained in this study showed that the anterior portion of the cranial base exhibits a significant shortening trend as the mammalian evolutionary scale ascends. Moreover, the growth pattern of the anterior portion of the skull base follows that of the facial bony structures. The ontogenic growth changes of the posterior portion of the skull base follows the growth pattern of the endocranial cavity. The significant trend of elongation in this area directly contributes to the posterior migration of the foramen magnum. The magnitude of these growth changes decreases as the evolutionary scale ascends. The angular measurements of the cranial flexion showed a less obtuse cranial base angle in young specimens and the ones higher on the mammalian scale. The skull kyphosis was less pronounced in these specimens and the anatomical features of the cranial base were more humanlike, including the balance of the head expressed by the position of the foramen magnum.  相似文献   

6.
A primate lymphotropic lentivirus was isolated on Hut 78 cells after cocultivation of a lymph node from a macaque that died with malignant lymphoma. In earlier studies SIV/Mne was inoculated into 17 macaques and two baboons. All of the macaques became viremic and seropositive. Fifteen of the macaques succumbed to a classic AIDS-like disease, whereas the baboons did not become viremic. The SIV/Mne virus has now been molecularly cloned and inoculated into Macaca nemestrina and baboons. A new transmission study has been initiated to test the effects of route and dosage on disease.  相似文献   

7.
The purpose of this study is to test various hypotheses about balancing-side jaw muscle recruitment patterns during mastication, with a major focus on testing the hypothesis that symphyseal fusion in anthropoids is due mainly to vertically- and/or transversely-directed jaw muscle forces. Furthermore, as the balancing-side deep masseter has been shown to play an important role in wishboning of the macaque mandibular symphysis, we test the hypothesis that primates possessing a highly mobile mandibular symphysis do not exhibit the balancing-side deep masseter firing pattern that causes wishboning of the anthropoid mandible. Finally, we also test the hypothesis that balancing-side muscle recruitment patterns are importantly related to allometric constraints associated with the evolution of increasing body size. Electromyographic (EMG) activity of the left and right superficial and deep masseters were recorded and analyzed in baboons, macaques, owl monkeys, and thick-tailed galagos. The masseter was chosen for analysis because in the frontal projection its superficial portion exerts force primarily in the vertical (dorsoventral) direction, whereas its deep portion has a relatively larger component of force in the transverse direction. The symphyseal fusion-muscle recruitment hypothesis predicts that unlike anthropoids, galagos develop bite force with relatively little contribution from their balancing-side jaw muscles. Thus, compared to galagos, anthropoids recruit a larger percentage of force from their balancing-side muscles. If true, this means that during forceful mastication, galagos should have working-side/balancing-side (W/B) EMG ratios that are relatively large, whereas anthropoids should have W/B ratios that are relatively small. The EMG data indicate that galagos do indeed have the largest average W/B ratios for both the superficial and deep masseters (2.2 and 4.4, respectively). Among the anthropoids, the average W/B ratios for the superficial and deep masseters are 1.9 and 1.0 for baboons, 1.4 and 1.0 for macaques, and both values are 1.4 for owl monkeys. Of these ratios, however, the only significant difference between thick-tailed galagos and anthropoids are those associated with the deep masseter. Furthermore, the analysis of masseter firing patterns indicates that whereas baboons, macaques and owl monkeys exhibit the deep masseter firing pattern associated with wishboning of the macaque mandibular symphysis, galagos do not exhibit this firing pattern. The allometric constraint-muscle recruitment hypothesis predicts that larger primates must recruit relatively larger amounts of balancing-side muscle force so as to develop equivalent amounts of bite force. Operationally this means that during forceful mastication, the W/B EMG ratios for the superficial and deep masseters should be negatively correlated with body size. Our analysis clearly refutes this hypothesis. As already noted, the average W/B ratios for both the superficial and deep masseter are largest in thick-tailed galagos, and not, as predicted by the allometric constraint hypothesis, in owl monkeys, an anthropoid whose body size is smaller than that of thick-tailed galagos. Our analysis also indicates that owl monkeys have W/B ratios that are small and more similar to those of the much larger-sized baboons and macaques. Thus, both the analysis of the W/B EMG ratios and the muscle firing pattern data support the hypothesis that symphyseal fusion and transversely-directed muscle force in anthropoids are functionally linked. This in turn supports the hypothesis that the evolution of symphyseal fusion in anthropoids is an adaptation to strengthen the symphysis so as to counter increased wishboning stress during forceful unilateral mastication. (ABSTRACT TRUNCATED)  相似文献   

8.
The retroviral restriction factor TRIMCyp, which is a fusion protein derived from the TRIM5 gene, blocks replication at a post-entry step. Among Old World primates, TRIMCyp has been found in four species of Asian macaques, but not in African monkeys. To further define the evolutionary origin of Old World TRIMCyp, we examined two species of baboons (genus Papio) and three additional macaque species, including M. sylvanus, which is the only macaque species found outside Asia, and represents the earliest diverging branch of the macaque lineage. None of four P. cynocephalus anubis, one P. hamadryas, and 36 M. sylvanus had either TRIMCyp mRNA or the genetic features required for its expression. M. sylvanus genomic sequences indicated that the lack of TRIMCyp in this species was not due to genetic homogeneity among specimens studied and revealed the existence of four TRIM5α alleles, all distinct from M. mulatta and Papio counterparts. Together with existing data on macaque evolution, our findings indicate that TRIMCyp evolved in the ancestors of Asian macaques approximately 5-6 million years before present (ybp), likely as a result of a retroviral threat. TRIMCyp then became fixed in the M. nemestrina lineage after it diverged from M. nigra, approximately 2 million ybp. The macaque lineage is unique among primates studied so far due to the presence and diversity of both TRIM5 and TRIMCyp restriction factors. Studies of these antiviral proteins may provide valuable information about natural antiviral mechanisms, and give further insight into the factors that shaped the evolution of macaque species.  相似文献   

9.
Data drawn from the perspectives of paleontology, comparative anatomy, embryology, teratology, and normal adult variation were analyzed with nine homology criteria in order to determine the homologues of the stapedial artery in adult humans. It was determined that 1) the stem of the stapedial artery does not persist within the cranial cavity; 2) the stem of the ramus inferior is retained in its entirety and forms the upper portion of the stem of the middle meningeal artery; 3) the proximal part of the ramus infraorbitalis is normally absent and is replaced by a collateral shunt arising from the ramus mandibularis; 4) the ramus mandibularis is retained and forms the lower portion of the middle meningeal stem and the inferior alveolar artery; 5) the most proximal portion of the maxillary artery is formed by an anastomotic shunt connecting the external carotid artery to the ramus mandibularis; 6) the anterior division of the ramus superior is normally present and well developed; 7) the posterior division of the ramus superior is present in many individuals; and 8) the junction of the two divisions of the ramus superior with the ramus inferior usually migrates to the floor of the middle cranial fossa. The range of human arterial patterns, and those of all other euprimates, can be derived from a hypothetical primitive pattern that is very similar to that of primitive rodents. In this pattern, the stapedial artery stem enters the middle cranial fossa and trifurcates into the anterior and posterior divisions of the ramus superior and the ramus inferior. In their evolution, strepsirhines initially lose the ramus inferior and haplorhines initially reduce the stapedial artery stem.  相似文献   

10.
目的比较H5N1禽流感病毒感染小鼠、恒河猴及食蟹猴急性期肺组织的病理学变化。方法在麻醉状态下对BALB/c小鼠、恒河猴及食蟹猴进行H5N1病毒滴鼻接种,在感染急性期实施安死术,取肺组织运用H&E结合免疫组化技术分析肺组织的病理变化。结果BALB/c小鼠感染急性期,肺组织以变质性炎为主,肺泡结构被广泛破坏,以单核细胞为主的炎细胞浸润,局部可见渗出性炎。而在恒河猴感染急性期肺组织病理改变以渗出性炎为主,同时可见变质性炎和增生性炎。在食蟹猴感染急性期肺组织病理改变以渗出性和变质性炎为主,同时亦可见上皮的新生。结论H5N1禽流感病毒感染小鼠与恒河猴、食蟹猴急性期肺组织的病理变化不同,这将为进一步认识禽流感的发病机制及研究针对性的治疗方法提供一些理论依据。  相似文献   

11.
Cercopithecoid monkeys are unique among primates in that all species (except macaques) lack a maxillary sinus, an unusual condition among eutherian mammals. Although this uncommon distribution of cranial pneumatization was noted previously, the phylogenetic ramifications have not been investigated fully. Recently, character state optimization analysis of computed tomography (CT) data from extant Old World monkeys suggested that the loss of the sinus may have occurred at the origin of the group, unlike previous hypotheses positing only a reduction in size of the structure. To critically evaluate the "early loss" hypothesis, a recently recovered complete cranium of Victoriapithecus macinnesi from Maboko Island, Kenya, was examined by CT to determine the extent of its cranial pneumatization. This taxon is crucial for evaluating character state evolution in Old World monkeys, due to its phylogenetic position, preceding the cercopithecine/colobine split. CT analysis reveals only cancellous bone lateral of the nasal cavity, indicating that Victoriapithecus does not possess a maxillary sinus. Phylogenetic evaluation of the fossil with extant catarrhine taxa strongly supports the early loss of the sinus in cercopithecoids. The results suggest that the maxillary sinus found in the genus Macaca is not homologous with that of other eutherians, which may provide insights into the origin and function (if any) of the paranasal pneumatizations.  相似文献   

12.
A primate lymphotropic lentivirus was isolated on the human T-cell line HuT 78 after cocultivation of a lymph node from a pig-tailed macaque (Macaca nemestrina) that had died with malignant lymphoma. This isolate, originally designated M. nemestrina immunodeficiency virus (MnIV) and now classified as simian immunodeficiency virus (SIV/Mne), was inoculated intravenously into three juvenile rhesus monkeys (Macaca mulatta), three juvenile pig-tailed macaques (M. nemestrina), and two juvenile baboons (Papio cynocephalus). All six macaques became viremic by 3 weeks after inoculation, whereas neither of the baboons developed viremia. One pig-tailed macaque died at 15 weeks with suppurative peritonitis secondary to ulcerative, necrotizing colitis. Immunologic abnormalities included a marked decrease in CD4+ peripheral blood lymphocytes. Although five macaques mounted an antibody response to SIV/Mne, the animal that died at 15 weeks remained antibody negative. Three other macaques (two rhesus and one pig-tailed) died 66 to 87 weeks after inoculation after exhibiting progressive weight loss, anemia, and diarrhea. Histopathologic findings at necropsy included various manifestations of immune deficiency, nephropathy, subacute encephalitis, pancreatitis, adenocarcinoma, and lymphoid atrophy. SIV/Mne could be readily isolated from the spleens and lymph nodes of all necropsied macaques, and from the cerebrospinal fluid, brains, bone marrow, livers, and pancreas of some of the animals. SIV antigens were localized by avidin-biotin immunohistochemistry to pancreatic islet cells and to bone marrow endothelial cells. The data suggest that African baboons may be resistant to infection by SIV/Mne, whereas Asian macaques are susceptible to infection with this pathogenic primate lentivirus.  相似文献   

13.
A worldwide survey of babirusa skulls curated in museum and private collections located 431 that were from adult males and had retained at least one maxillary canine tooth. Eighty-three of these skulls were identified as exhibiting aberrant maxillary canine tooth growth. Twenty-four of the skulls represented babirusa from Buru and the Sula Islands, and forty-five skulls represented babirusa from Sulawesi and the Togian Islands. The remaining series of fourteen babirusa skulls originally came from zoo animals. Fifteen skulls showed anomalous alveolar and tooth rotation in a median plane. Twenty-nine skulls had maxillary canine teeth that did not grow symmetrically towards the median plane of the cranium. Fourteen skulls showed evidence that the tips of one or both maxillary canine teeth had eroded the nasal bones. Twenty-one skulls had maxillary canine teeth that had eroded the frontal bones. The teeth of two skulls had eroded a parietal bone. One skull had two maxillary canines arising from an adjacent pair of alveoli on the left side of the cranium. Three skulls exhibited alveoli with no formed maxillary canine teeth in them. Analysis suggested that approximately 12% of the adult male babirusa in the wild experience erosion of the cranial bony tissues as a result of maxillary canine tooth growth. There was no skeletal evidence that maxillary canine teeth penetrate the eye.  相似文献   

14.
The primate superfamily Cercopithecoidea (or Old World monkeys) is characterized by a widespread lack of the maxillary sinus, a paranasal pneumatic space found in most other eutherian mammals. Previous discussions of the distribution of pneumatization in the group, however, have been ambiguous and contradictory, and have been further complicated by discussion of a poorly defined structure named the "lateral recess," linked implicitly to the maxillary sinus. Computed tomography (CT) was applied to dry crania of all cercopithecoid genera to evaluate the morphological relevance of the term "lateral recess." Results suggest that the "lateral recess" is a structural consequence of changes in skull form unrelated to pneumatization. Thus, the term should be abandoned. All Old World monkeys (except the genus Macaca) are found to lack the maxillary sinus, but a previously undescribed bulla, only separated from the nasal cavity anteriorly, was discovered in the Chinese golden monkey Rhinopithecus. If this bulla is related to the paranasal sinuses, it suggests that the initial change in cercopithecoid cranial evolution was a suppression of pneumatic development, which may have been subsequently reversed twice in the history of the group, in Macaca and Rhinopithecus.  相似文献   

15.
The orbitotemporal venous sinuses accompany the intracranial branches of the stapedial artery. These sinuses are large in primitive primates and drain the extensive territories supplied by the stapedial artery as well as the brain. The orbit is drained by a wide cranio-orbital sinus which empties into the postglenoid emissary vein. Also emptying into the postglenoid vein is the petrosquamous sinus. The latter diverts cerebral blood from the transverse sinus and also drains the temporalis muscle. Emptying into both the cranio-orbital and petrosquamous sinuses are meningeal tributaries, which drain the cranial side wall and the dura mater. The relatively small sinus communicans runs in the angle between the petrosal bone and the cranial side wall. It commences at the postglenoid vein and connects the distal end of the petrosquamous sinus to the pterygoid venous plexus. In humans, the orbitotemporal sinus system is greatly modified. Its remnants persist for the most part as "middle meningeal veins." The system no longer drains the orbit, the temporal fossa, or the brain. The petrosquamous sinus becomes attenuated or obliterated along part or all of its length. The postglenoid vein vanishes. The cranio-orbital sinus is reduced in diameter and its connection to the orbit is feeble or absent. During development, the posterior end of the cranio-orbital sinus migrates inferiorly along the sinus communicans. In most individuals, this migration ceases at the foramen spinosum, site of the emissary vein of the sinus communicans. Meningeal tributaries are relatively large in humans, and drain principally into the cranio-orbital sinus or sphenoparietal sinus. The sphenoparietal sinus is an evolutionary novelty restricted to hominoids and is frequently developed in only Homo and Pongo.  相似文献   

16.
In a mixed sex sample of ten adult gibbon (Hylobates moloch) skulls, one cranium of a male with maxillary sinus atelectasis of the left side was identified. While external inspection revealed a slight drop of the left orbital floor, serial coronal computer tomography (CT) scans show characteristic changes of the left maxillary sinus and its surrounding structures. In addition to the sunken orbital floor, radiological features of the specimen include an inward bowing of the medial sinus wall, sinus opacification, and a reduction in maxillary sinus size to a slit-like cavity, which suggest a diagnosis of silent sinus syndrome. This report is the first, to our knowledge, of maxillary sinus atelectasis in a non-human primate. This finding is valuable for the understanding of the pathogenesis and etiology of maxillary sinus atelectasis. At the same time, however, paleoanthropologists and primatologists may refer to this information when dealing with the interpretation of maxillary sinus pneumatization of partially broken archaeological and fossil skulls.  相似文献   

17.
The uterine cervix of rhesus macaque, crab-eating macaque, stump-tailed macaque, pig-tailed macaque, marmoset, baboon, patas, and squirrel monkeys was studied macroscopically and microscopically. Distribution of spermatozoa and leukocytes in the lumen and within the crypts and clefts was studied in rhesus and marmoset uterine cervix. The cervical canal of baboon, patas, marmoset, and stump-tailed monkeys is straight or slightly bent. The presence of variably developed ventral and dorsal colliculi in rhesus, crab-eating, and pig-tailed macaques causes the dorsoventral sinuosity of the cervical canal. The cervix of all investigated specimens is fundamentally fibrous tissue and the amount of muscle fibers increases toward the uterine corpus. The cervical mucosa of baboon, marmoset, and patas monkeys contains a large amount of clefts and tubular tunnels of variable structure, length, width, direction, and degree of branching. The cervical mucosa of macaques contains a large number of crypts of complex structure, length, width and degree of branching. The cervical crypts in macaques are usually longer in the ectocervix; whereas, in the midcervix, mucosa contains small crypts, clefts and long tunnels. Squamo-columnar junction is located near the external os in baboon, patas, marmoset, rhesus, crab-eating, and pig-tailed monkeys. In squirrel monkey, squamous epithelium is continuous through the external os, covers the vestibule and external surface of the cervical colliculi. In stump-tailed macaque, squamo columnar junction is located in the vagina, 1–3 cm from the external os of the cervix. The vaginal wall between the squamo-columnar junction and the external os of the cervix is covered with heavily branched mucosa lined with columnar epithelium. Ciliated cells of cervical epithelium occur in 9 to 19%. A large number of spermatozoa and a relatively low number of leucocytes have been found within crypts and clefts of cervical mucosa. The results are discussed in relation to the function of the cervix in different stages of the cycle, during pregnancy and parturition.This investigation was supported in part by Ford Foundation Grant No. 710-0287.  相似文献   

18.
Removing or reducing the size of canine teeth of baboons and macaques has become an accepted practice to minimize the potential for injury to laboratory animal care personnel. A submucosal vital root retention procedure was adapted from the technique of root banking human teeth. In this technique, the crown of a tooth is amputated below the level of the alveolar bone crest, and the exposed pulp covered by a mucoperiosteal gingival flap. Our aim was to disarm the canine teeth of baboons and macaques with a single surgical procedure that would preserve a vital tooth root buried in alveolar bone under normal mucosa. Our long-term objective was to develop a technique that would not require further clinical management during the life of the animal. This paper presents the surgical techniques used.  相似文献   

19.
河南一尤因他兽头骨化石   总被引:1,自引:1,他引:0  
大型尤因他兽类在北美曾发现过许多头骨和头后骨骼化石。但在亚洲,以往虽有这类动物化石的报道,因材料零星且不完整,而不能确定。河南尤因他兽头骨的发现可以肯定大型尤因他兽类在亚洲的分布,同时进一步证实了在中始新世亚洲与北美大陆的哺乳类也有交往。从这里记述的意外尤因他兽来看,卢氏组下部的时代可认为是中始新世。  相似文献   

20.
There has been a long‐standing debate regarding the diversification of paranasal sinuses, namely pneumatized spaces in the face. Functional adaptation and structural constraints have generally been suggested to explain sinus diversification in vertebrates. Here we investigated variation in the maxillary sinus and the external facial cranium in hybrid Taiwanese–Japanese macaques to estimate the genetic basis of phenotypic differences. The Taiwanese macaques have a large sinus, whereas the Japanese macaques have a small sinus; they are also significantly different in their external craniofacial morphology. Variations in the hybrids' external craniofacial morphology can be mostly explained by a simple additive model. In contrast, their sinus morphology significantly deviates from the value expected under this additive model, wherein most hybrids have a large sinus, similar to that in Taiwanese macaques, regardless of the degree of hybridization. When the whole structure is considered, a novel phenotype can be seen in the hybrids. Our results suggest that the sinus and face are independent of each other, both genetically and developmentally, and that the small sinus is mainly caused by intrinsic genetic factors, rather than being structurally constrained by the craniofacial architecture. Such genetic factors may have contributed to the enigmatic diversity of craniofacial pneumatization. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 333–347.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号