首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Regulation of end-expiratory lung volume during exercise   总被引:7,自引:0,他引:7  
We determined the effects of exercise on active expiration and end-expiratory lung volume (EELV) during steady-state exercise in 13 healthy subjects. We also addressed the questions of what affects active expiration during exercise. Exercise effects on EELV were determined by a He-dilution technique and verified by changes in end-expiratory esophageal pressure. We also used abdominal pressure-volume loops to determine active expiration. EELV was reduced with increasing exercise intensity. EELV was reduced significantly during even mild steady-state exercise and during heavy exercise decreased an average of 0.71 +/- 0.3 liter. Dynamic lung compliance was reduced 30-50%; EELV remained greater than closing volume. Changing the resistance to airflow (via SF6-O2 or He-O2 breathing) during steady-state exercise changed the peak gastric and esophageal pressure generation during expiration but did not alter EELV; breathing through the mouthpiece produced similar effects during exercise. EELV was significantly reduced in the supine position. With supine exercise active expiration was not elicited, and EELV remained the same as in supine rest. With CO2-driven hyperpnea (7-70 l/min), EELV remained unchanged from resting levels, whereas during exercise, at similar minute ventilation (VE) values EELV was consistently decreased. At the same VE, treadmill running caused an increase in tonic gastric pressure and greater reductions in EELV than either walking or cycling. We conclude that both the exercise stimulus and the resultant hyperpnea stimulate active expiration and a reduced FRC. This new EELV is preserved in the face of moderate changes in mechanical time constants of the lung. This reduced EELV during exercise aids inspiration by optimizing diaphragmatic length and permitting elastic recoil of the chest wall.  相似文献   

2.
Effects of atropine in ponies with recurrent airway obstruction   总被引:2,自引:0,他引:2  
The effects of atropine on lung function and airway reactivity in two groups of ponies were measured. Principal ponies had a history of recurrent airway obstruction when housed in a barn and fed hay; control ponies had no history of airway obstruction. Principal and control ponies were paired, and measurements were made when principal ponies were in clinical remission (period A) and during an acute attack of airway obstruction (period B). Atropine did not alter pulmonary resistance (RL), dynamic compliance (Cdyn), or airway responsiveness in either group of ponies at period A or in the controls at period B. In principal ponies at period B, atropine did not alter Cdyn or the concentration of aerosol histamine required to decrease Cdyn to 65% of base line (ED65Cdyn) but reduced RL and the change in RL induced by 0.1 mg/ml histamine (delta RL0.1). It is likely that the latter observation was due to geometric changes in the airways, because the change in RL and in delta RL0.1 were significantly correlated. The results of this study show little resting bronchomotor tone in normal ponies, but a major portion of the increase in RL in principals at period B is mediated via muscarinic receptors. Little evidence exists for muscarinic receptor involvement in the response to aerosol histamine in either principal or control ponies.  相似文献   

3.
Bonora, M., and M. Vizek. Role of vagalfibers in the hypoxia-induced increases in end-expiratory lung volumeand diaphragmatic activity. J. Appl.Physiol. 83(3): 700-706, 1997.The possible role of pulmonary C fibers in thehypoxia-induced concomitant increases in end-expiratory lung volume(EELV) and in the activity of the diaphragm at the end of expiration(DE) were evaluated bymeasuring the effects of hypoxia (10%O2) on ventilation, EELV, andDE in eight chloralose-urethananesthetized rats. Recordings were made before and after blocking vagalC fibers and after bilateral vagotomy. C-fiber conduction was blockedby applying capsaicin perineurally to the cervical vagi. The efficiencyof C-fiber blockade was tested with intravenous capsaicin and itsselectivity by the Hering-Breuer reflex. Perineural capsaicin abolishedthe reflex apnea induced by intravenous capsaicin and transientlyreduced Hering-Breuer reflex. Perineural capsaicin affected neitherventilation, DE, and EELV in airnor the hypoxia-induced increases in these parameters. Vagotomy causedthe typical changes of breathing pattern in air, but the ventilatoryresponse to hypoxia was unchanged. Vagotomy performed during hypoxiaresulted in large decreases inDE and EELV. Hypoxia increasedDE and EELV in vagotomized rats but less than in intact rats. We conclude that the hypoxia-induced increases in EELV and diaphragmatic activity are probably not mediatedby vagal C fibers and that vagal afferents are involved but not fullyresponsible for this phenomenon.

  相似文献   

4.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).  相似文献   

6.
Although a thoracic volume dependence of upper airway resistance and caliber is known to exist in seated subjects, the mechanisms mediating this phenomenon are unknown. To test the hypothesis that actively altered end-expiratory lung volume (EELV) affects upper airway resistance in the supine position and to explore the mechanisms of any EELV-induced resistance changes, we studied five normal males during wakefulness. Supraglottic upper airway resistance (Ruaw) was calculated at an inspiratory flow of 0.1 l/s. The genioglossal electromyogram was obtained with indwelling wire electrodes and processed as moving time average. End-tidal CO2 was monitored by infrared analyzer. Observations were made during four 20-breath voluntary maneuvers: two at high and two at low EELV in each subject. Each maneuver was preceded by a control period at functional residual capacity. At high lung volume the EELV was increased by 2.23 +/- 0.54 (SD) liters; Ruaw decreased to 67.8 +/- 35.1% of control, while tonic and phasic genioglossal activities declined to 79.0 +/- 23.1 and 72.4 +/- 29.8%, respectively. At low lung volume the EELV was decreased by 0.86 +/- 0.23 liters. Ruaw increased to 178.2 +/- 186.8%, while tonic and phasic genioglossal activities increased to 243.0 +/- 139.3 and 249.1 +/- 146.3%, respectively (P less than 0.0001 for all). The findings were not explained by CO2 perturbations or respiratory pattern. Multiple linear regression analysis indicated that the genioglossal responses blunted the EELV-induced changes in upper airway patency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To determine the effects of the sleep-induced increases in upper airway resistance on ventilatory output, we studied five subjects who were habitual snorers but otherwise normal while awake (AW) and during non-rapid-eye-movement (NREM) sleep under the following conditions: 1) stage 2, low-resistance sleep (LRS); 2) stage 3-4, high-resistance sleep (HRS) (snoring); 3) with continuous positive airway pressure (CPAP); 4) CPAP + end-tidal CO2 partial pressure (PETCO2) mode isocapnic to LRS; and 5) CPAP + PETCO2 isocapnic to HRS. We measured ventilatory output via pneumotachograph in the nasal mask, PETCO2, esophageal pressure, inspiratory and expiratory resistance (RL,I and RL,E). Changes in PETCO2 were confirmed with PCO2 measurements in arterialized venous blood in all conditions in one subject. During wakefulness, pulmonary resistance (RL) remained constant throughout inspiration, whereas in stage 2 and especially in stage 3-4 NREM sleep, RL rose markedly throughout inspiration. Expired minute ventilation (VE) decreased by 12% in HRS, and PETCO2 increased in LRS (3.3 Torr) and HRS (4.9 Torr). CPAP decreased RL,I to AW levels and increased end-expiratory lung volume 0.25-0.93 liter. Tidal volume (VT) and mean inspiratory flow rate (VT/TI) increased significantly with CPAP. Inspiratory time (TI) shortened, and PETCO2 decreased 3.6 Torr but remained 1.3 Torr above AW. During CPAP (RL,I equal to AW), with PETCO2 returned to the level of LRS, VT/TI and VE were 83 and 52% higher than during LRS alone. Also on CPAP, with PETCO2 made equal to HRS, VT, VT/TI, and VE were 67, 112, and 67% higher than during HRS alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
With the use of the technique of rapid airway occlusion during constant flow inflation, respiratory mechanics were studied in eight anesthetized paralyzed supine normal humans during zero (ZEEP) and positive end-expiratory pressure (PEEP) ventilation. PEEP increased the end-expiratory lung volume by 0.49 liter. The changes in transpulmonary and esophageal pressure after flow interruption were analyzed in terms of a seven-parameter "viscoelastic" model. This allowed assessment of static lung and chest wall elastance (Est,L and Est,W), partitioning of overall resistance into airway interrupter (Rint,L) and tissue resistances (delta RL and delta RW), and computation of lung and chest wall "viscoelastic constants." With increasing flow, Rint,L increased, whereas delta RL and delta RW decreased, as predicted by the model. Est,L, Est,W, and Rint,L decreased significantly with PEEP because of increased lung volume, whereas delta R and viscoelastic constants of lung and chest wall were independent of PEEP. The results indicate that PEEP caused a significant decrease in Rint,L, Est,L, and Est,W, whereas the dynamic tissue behavior, as reflected by delta RL and delta RW, did not change.  相似文献   

9.
Histamine dose-response curves in guinea pigs   总被引:4,自引:0,他引:4  
Histamine dose-response curves were performed on anesthetized tracheostomized guinea pigs that were paralyzed and mechanically ventilated at a constant tidal volume and breathing frequency. The dose was calculated by generating an aerosol of known concentration and measuring the volume delivered to the lung. Increasing the dose was accomplished by increasing the number of breaths of aerosol delivered. The response to each dose was determined by measuring the change in airway resistance (RL) and dynamic compliance (Cdyn) using the method of Von Neergaard and Wirz (Z. Klin. Med. 105: 51-82, 1927). With increasing doses of histamine, RL increased and reached a plateau at approximately five times the base-line value and Cdyn fell to approximately 20% of its initial value. The variability in the base-line and maximum response as well as the calculated sensitivity and reactivity was less than that previously reported. Propranolol pretreatment increased resting RL and shifted the dose-response curve for RL to the left of the controls, increasing reactivity but not sensitivity. Atropine shifted the dose-response curve to the right of the control, decreasing sensitivity but without changing reactivity. The data for Cdyn showed that atropine pretreatment caused a higher resting value and propranolol pretreatment a lower value at the highest histamine dose but no differences in either sensitivity or reactivity.  相似文献   

10.
We examined the response of five ponies with recurrent airway obstruction (principals) and five age- and gender-matched controls to the aerosol alpha-adrenergic agonist phenylephrine after blockade with propranolol and atropine. Measurements were made with principal ponies in clinical remission (period A) and during acute airway obstruction (period B). The blockade had no effect on base-line pulmonary mechanics in control ponies during periods A and B or in the principal ponies during period A. However, in the principal ponies during period B, blockade increased dynamic compliance (Cdyn) and decreased pulmonary resistance (RL). Phenylephrine had no effect on the controls during either period. In the principals, phenylephrine decreased Cdyn and increased RL during both periods. The alpha 1-agonist aerosol prazosin shifted the phenylephrine dose-response curves to the right, but prasozin did not bronchodilate the principals during period B. This suggests that the role of alpha 1-adrenergic receptors in airway narrowing in ponies with recurrent airway obstruction is minimal. However, the response to phenylephrine in only the principal ponies suggests an increase in alpha-receptor numbers and/or activity in these animals compared with controls.  相似文献   

11.
Frequency-dependent characteristics of lung resistance (RL) and elastance (EL) are sensitive to different patterns of airway obstruction. We used an enhanced ventilator waveform (EVW) to measure inspiratory RL and EL spectra in ventilated patients during thoracic surgery. The EVW delivers an inspiratory flow waveform with enhanced spectral excitation from 0.156 to 8.1 Hz. Estimates of the coefficients in a trigonometric approximation of the EVW flow and transpulmonary pressure inspirations yielded inspiratory RL and EL spectra. We applied the EVW in a group with mild obstruction undergoing various thoracoscopic procedures (n = 6), and another group with severe chronic obstructive pulmonary disease undergoing lung volume reduction surgery (n = 8). Measurements were made at positive end-expiratory pressure (PEEP) of 0, 3, and 6 cmH(2)O. Inspiratory RL was similar in both groups despite marked differences in spirometry. The chronic obstructive pulmonary disease patients demonstrated a pronounced frequency-dependent increase in inspiratory EL consistent with severe heterogeneous peripheral airway obstruction. PEEP appears to have beneficial effects by reducing peripheral airway resistance. Lung volume reduction surgery resulted in increased inspiratory RL and EL at all frequencies and PEEPs, possibly due to loss of diseased lung tissue, pulmonary edema, increased mechanical heterogeneity, and/or an improvement in airway tethering.  相似文献   

12.
The central nervous system (CNS) plays an important role in the reflex control of bronchomotor tone, but the relevant neurotransmitters and neuromodulators have not been identified. In this study we have investigated the effect of histamine. Anesthetized male guinea pigs were prepared with a chronically implanted intracerebroventricular (icv) cannula and instrumented for the measurement of pulmonary resistance (RL), dynamic lung compliance (Cdyn), tidal volume (VT), respiratory rate (f), blood pressure (BP), and heart rate (HR). Administration of histamine (2-30 micrograms) icv caused a significant (P less than 0.05) reduction of Cdyn with no change in RL, VT, and f. At a dose of 100 micrograms icv, histamine caused an increase in RL (202 +/- 78%), a reduction of Cdyn (77 +/- 9%), an increase in f (181 +/- 64%), and a reduction of VT (53 +/- 18%). There were no changes in BP and HR after 100 micrograms of icv histamine. In contrast, intravenous administration of histamine (0.1-2 micrograms/kg) caused a dose-dependent decrease in Cdyn and increase in RL that was associated with tachypnea at each bronchoconstrictor dose. Intravenous histamine (2 micrograms/kg) produced a fall in BP and an increase in HR. The bronchoconstrictor responses to icv histamine were completely blocked by vagotomy and significantly reduced by atropine (0.1 mg/kg iv), whereas vagotomy and atropine did not block the bronchospasm due to intravenous histamine. Additional studies indicated that the pulmonary responses due to icv histamine (100 micrograms) were blocked by pretreatment with the H1-antagonist chlorpheniramine (1 and 10 micrograms, icv). These data indicate that histamine may serve a CNS neurotransmitter function in reflex bronchoconstriction in guinea pigs.  相似文献   

13.
Airway reactivity in ponies with recurrent airway obstruction (heaves)   总被引:2,自引:0,他引:2  
We measured lung function and airway reactivity to histamine administered by aerosol in two groups of ponies. Principal ponies had a history of heaves, a disease characterized by recurrent airway obstruction when ponies are housed in a barn and fed hay; control ponies had no history of airway obstruction. Ponies were paired (principal and control) and measurements were made when principal ponies were at pasture and in clinical remission (period A), following barn housing when principal ponies had acute airway obstruction (period B), and after a further 1 and 2 wk at pasture (periods C and D). At periods A, C, and D dynamic compliance (Cdyn), pulmonary resistance (RL), arterial O2 tension (PaO2), and CO2 tension (PaCO2) of principals and controls did not differ. Barn housing (period B) decreased Cdyn and PaO2 and increased RL in principals but not controls. The ED65Cdyn (the dose of histamine to reduce Cdyn to 65% of base line) did not differ in principals and controls at periods A, C, and D. At period B, ED65Cdyn decreased by 2.5-log doses of histamine in principals while ED65Cdyn was not affected in controls. There was no correlation between changes in airway reactivity and changes in RL and Cdyn. We conclude that ponies in clinical remission from heaves are not hyperreactive to histamine aerosol. This model of lung disease is similar to some forms of industrial asthma in which hyperreactivity occurs only during acute airway obstruction. The lack of correlation between ED65Cdyn and the degree of airway obstruction suggests that the hyperreactivity of principal ponies to histamine aerosol cannot be explained solely by alterations in baseline airway caliber.  相似文献   

14.
We attempted to determine whether stimulation of pulmonary rapidly adapting receptors (RARs) increase tracheal submucosal gland secretion in anesthetized open-chest dogs. Electroneurographic studies of pulmonary afferents established that RARs but not lung C-fibers were stimulated by intermittent lung collapse during deflation, collapse being produced by removing positive end-expiratory pressure (PEEP, 4 cmH2O) or by applying negative end-expiratory pressure (NEEP, -4 cmH2O). We measured tracheal secretion by the "hillocks" method. Removing PEEP or applying NEEP for 1 min increased secretion from a base line of 6.0 +/- 1.1 to 11.8 +/- 1.7 and 22.0 +/- 2.8 hillocks.cm-2.min-1, respectively (P less than 0.005). After PEEP was restored, dynamic lung compliance (Cdyn) was 37% below control, and secretion remained elevated (P less than 0.05). A decrease in Cdyn stimulates RARs but not other pulmonary afferents. Hyperinflation, which restored Cdyn and RAR activity to control, returned secretion rate to base line. Secretory responses to lung collapse were abolished by vagal cooling (6 degrees C), by pulmonary vagal section, or by atropine. We conclude that RAR stimulation reflexly increases airway secretion. We cannot exclude the possibility that reduced input from slowly adapting stretch receptors contributed to the secretory response.  相似文献   

15.
To assess the effect of the normal respiratory resistive load on ventilation (VE) and respiratory motor output during exercise, we studied the effect of flow-proportional pressure assist (PA) (2.2 cmH2O.l-1.s) on various ventilatory parameters during progressive exercise to maximum in six healthy young men. We also measured dynamic lung compliance (Cdyn) and lung resistance (RL) and calculated the time course of respiratory muscle pressure (Pmus) during the breath in the assisted and unassisted states at a sustained exercise level corresponding to 70-80% of the subject's maximum O2 consumption. Unlike helium breathing, resistive PA had no effect on VE or any of its subdivisions partly as the result of an offsetting increase in RL (0.78 cmH2O.1-1.s) and partly to a reduction in Pmus. These results indicate that the normal resistive load does not constrain ventilation during heavy exercise. Furthermore, the increase in exercise ventilation observed with helium breathing, which is associated with much smaller degrees of resistive unloading (ca. -0.6 cmH2O.l-1.s), is likely the result of factors other than respiratory muscle unloading. The pattern of Pmus during exercise with and without unloading indicates that the use of P0.1 as an index of respiratory motor output under these conditions may result in misleading conclusions.  相似文献   

16.
Full methacholine dose-response curves were performed on anesthetized tracheostomized Fischer 344 adult rats treated neonatally with capsaicin (50 mg/kg) or with vehicle alone. Capsaicin, the hot extract of pepper, releases substance P (SP) from nonmyelinated sensory nerve endings and causes acute bronchoconstriction and airway microvascular leakiness. Chronic treatment with capsaicin leads to depletion of SP and other tachykinins from afferent C-fibers and can therefore be used as a tool to investigate the contribution of SP innervation to airway responses. The rats (9 controls and 6 treated with capsaicin) were paralyzed with succinylcholine and mechanically ventilated at a constant tidal volume and frequency. Airway resistance (RL) and dynamic compliance (Cdyn) were determined at each dose of methacholine from measurements of volume, flow, and transpulmonary pressure. Capsaicin-treated rats were found to have a significantly reduced baseline RL [0.150 +/- 0.039 (SD) vs. 0.225 +/- 0.050 cmH2O.ml-1.s, P = 0.009] and a correspondingly significantly elevated Cdyn (0.371 +/- 0.084 vs. 0.268 +/- 0.053 ml/cmH2O, P = 0.012). There was no significant difference in sensitivity to methacholine, but the maximal response to methacholine was significantly greater in the capsaicin-treated rats. In terms of RL, the maximal response for capsaicin-treated rats was 6.03 x baseline +/- 0.98 vs. 4.30 x baseline +/- 1.80 (P = 0.05) for controls, and for Cdyn changes the maximal decrease was 5.75 x baseline +/- 1.22 vs. 3.83 +/- 0.69 (P = 0.002). The observed differences in RL and Cdyn coupled with the differences in maximal responses can be attributed to the selective destruction of a subpopulation of pulmonary afferent C-fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lung volumes during low-intensity steady-state cycling   总被引:2,自引:0,他引:2  
The use of inspiratory capacity (IC) to estimate end-expiratory lung volume (EELV) during exercise has been questioned because of the assumption of constant total lung capacity (TLC). To investigate lung volumes during low-intensity steady-state cycling, we measured EELV by the open-circuit N2 washout method (MR-1, currently Sensormedics 2100) in eight healthy men while at rest and during unloaded and 60-W cycling. TLC was calculated by adding EELV and IC. Measurement variation of TLC was 142 ml at rest, 121 ml during unloaded cycling, and 158 ml during 60-W cycling. TLC did not differ significantly among the three conditions studied. EELV decreased during unloaded (P less than 0.002) and 60-W cycling (P less than 0.001) compared with rest. End-inspiratory lung volume increased only during 60-W cycling (P = 0.03). The decrease in EELV accounted for 100% of the increase in tidal volume during unloaded cycling. Although minute ventilation was similar in the subjects during unloaded cycling, we noted that breathing patterns varied among the subjects. The increase in respiratory frequency was negatively correlated to the change in tidal volume (R2 = 0.54, P = 0.038) and to the change in end-inspiratory lung volume (R2 = 0.68, P = 0.012). We conclude that TLC does not differ significantly during low-intensity steady-state cycling and that use of IC to estimate changes in EELV is appropriate.  相似文献   

18.
The main purpose of this study was to examine the relative contribution of respiratory mechanical factors and the increased metabolic cost of locomotion to exertional breathlessness in obese women. We examined the relationship of intensity of breathlessness to ventilation (VE) when exertional oxygen uptake (VO2) of obesity was minimized by cycle exercise. Eighteen middle-aged (54+/-8 yr, mean+/-SD) obese [body mass index (BMI) 40.2+/-7.8 kg/m2] and 13 age-matched normal-weight (BMI 23.3+/-1.7 kg/m2) women were studied. Breathlessness at higher submaximal cycle work rates was significantly increased (by>or=1 Borg unit) in obese compared with normal-weight women, in association with a 35-45% increase in Ve and a higher metabolic cost of exercise. Obese women demonstrated greater resting expiratory flow limitation, reduced resting end-expiratory lung volume (EELV)(by 20%), and progressive increases in dynamic EELV during exercise: peak inspiratory capacity (IC) decreased by 16% (0.39 liter) of the resting value. VE/VO2 slopes were unchanged in obesity. Breathlessness ratings at any given VE or VO2 were not increased in obesity, suggesting that respiratory mechanical factors were not contributory. Our results indicate that in obese women, recruitment of resting IC and dynamic increases in EELV with exercise served to optimize operating lung volumes and to attenuate expiratory flow limitation so as to accommodate the increased ventilatory demand without increased breathlessness.  相似文献   

19.
We have recently shown in dogs that much of the increase in lung resistance (RL) after induced constriction can be attributed to increases in tissue resistance, the pressure drop in phase with flow across the lung tissues (Rti). Rti is dependent on lung volume (VL) even after induced constriction. As maximal responses in RL to constrictor agonists can also be affected by changes in VL, we questioned whether changes in the plateau response with VL could be attributed in part to changes in the resistive properties of lung tissues. We studied the effect of changes in VL on RL, Rti, airway resistance (Raw), and lung elastance (EL) during maximal methacholine (MCh)-induced constriction in 8 anesthetized, paralyzed, open-chest mongrel dogs. We measured tracheal flow and pressure (Ptr) and alveolar pressure (PA), the latter using alveolar capsules, during tidal ventilation [positive end-expiratory pressure (PEEP) = 5.0 cmH2O, tidal volume = 15 ml/kg, frequency = 0.3 Hz]. Measurements were recorded at baseline and after the aerosolization of increasing concentrations of MCh until a clear plateau response had been achieved. VL was then altered by changing PEEP to 2.5, 7.5, and 10 cmH2O. RL changed only when PEEP was altered from 5 to 10 cmH2O (P < 0.01). EL changed when PEEP was changed from 5 to 7.5 and 5 to 10 cmH2O (P < 0.05). Rti and Raw varied significantly with all three maneuvers (P < 0.05). Our data demonstrate that the effects of VL on the plateau response reflect a complex combination of changes in tissue resistance, airway caliber, and lung recoil.  相似文献   

20.
We studied airway reactivity (AR) to aerosolized histamine, carbachol, and citric acid in lambs 1 mo of age to adulthood. Awake lambs were intubated and studied in a plethysmograph that measured dynamic compliance (Cdyn), resistance of the lung (RL), and functional residual capacity (FRC). Pleural pressure was measured using a Silastic balloon in the pleural space, and airway opening pressure (Pao) was measured using a catheter placed 1-2 cm distal to the nasotracheal tube. At the ages of 1, 3, 5, and 7 mo and adulthood, measurements of Cdyn, RL, and FRC were obtained in 46 sheep (22 males, 24 females). AR to carbachol, histamine, and citric acid was measured in each sheep in randomized order on three separate days by giving increasing concentrations of the drug in a noncumulative fashion. The dose that would have caused a 35% reduction in Cdyn (ED65Cdyn), a doubling of RL (ED200RL), or a 50% increase in FRC (ED150FRC) was calculated. In both males and females, base-line Cdyn increased (r = 0.81, P less than 0.01) with age, as did FRC (r = 0.87, P less than 0.01). There was no significant change in RL in either sex with age or in the group as a whole. There was a significant increase in AR to both histamine and carbachol with increasing age as measured by a decrease in ED65Cdyn (P less than 0.01 and P less than 0.05, respectively) with age. There was no significant change in AR with age as measured by RL or FRC for any of the three bronchoconstrictors tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号