首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At glutamatergic synapses, the scaffolding protein PSD95 links the neuronal isoform of nitric-oxide synthase (nNOS) to the N-methyl-d-aspartate (NMDA) receptor. Phosphorylation of nNOS at serine 847 (Ser(847)) by the calcium-calmodulin protein kinase II (CaMKII) inhibits nNOS activity, possibly by blocking the binding of Ca(2+)-CaM. Here we show that the NMDA mediates a novel bidirectional regulation of Ser(847) phosphorylation. nNOS phosphorylated at Ser(847) colocalizes with the NMDA receptor at spines of cultured hippocampal neurons. Treatment of neurons with 5 microm glutamate stimulated CaMKII phosphorylation of nNOS at Ser(847), whereas excitotoxic concentrations of glutamate, 100 and 500 microm, induced Ser(847)-PO(4) dephosphorylation by protein phosphatase 1. Strong NMDA receptor stimulation was likely to activate nNOS under these conditions because protein nitration to form nitrotyrosine, a marker of nNOS activity, correlated in individual neurons with Ser(847)-PO(4) dephosphorylation. Of particular note, stimulation with low glutamate that increased phosphorylation of nNOS at Ser(847) could be reversed by subsequent high glutamate treatment which induced dephosphorylation. The reversibility of NMDA receptor-induced phosphorylation at Ser(847) by different doses of glutamate suggests two mechanisms with opposite effects: 1). a time-dependent negative feedback induced by physiological concentrations of glutamate that limits nNOS activation and precludes the overproduction of NO; and 2). a pathological stimulation by high concentrations of glutamate that leads to unregulated nNOS activation and production of toxic levels of NO. These mechanisms may share pathways, respectively, with NMDA receptor-induced forms of synaptic plasticity and excitotoxicity.  相似文献   

2.
Trimethyltin (TMT) intoxication is considered a suitable experimental model to study the molecular basis of selective hippocampal neurodegeneration as that occurring in several neurodegenerative diseases. We have previously shown that rat hippocampal neurons expressing the Ca(2+)-binding protein calretinin (CR) are spared by the neurotoxic action of TMT hypothetically owing to their ability to buffer intracellular Ca(2+) overload. The present study was aimed at determining whether intracellular Ca(2+) homeostasis dysregulation is involved in the TMT-induced neurodegeneration and if intracellular Ca(2+)-buffering mechanisms may exert a protective action in this experimental model of neurodegeneration. In cultured rat hippocampal neurons, TMT produced time- and concentration-dependent [Ca(2+)](i) increases that were primarily due to Ca(2+) release from intracellular stores although Ca(2+) entry through Ca(v)1 channels also contributed to [Ca(2+)](i) increases in the early phase of TMT action. Cell pre-treatment with the Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (2 muM) significantly reduced the TMT-induced neuronal death. Moreover, CR(+) neurons responded to TMT with smaller [Ca(2+)](i) increases. Collectively, these data suggest that the neurotoxic action of TMT is mediated by Ca(2+) homeostasis dysregulation, and the resistance of hippocampal neurons to TMT (including CR(+) neurons) is not homogeneous among different neuron populations and is related to their ability to buffer intracellular Ca(2+) overload.  相似文献   

3.
Disruption of neuronal Ca(2+) homeostasis plays a well-established role in cell death in a number of neurodegenerative disorders. Recent evidence suggests that proteolysis of the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3) R1), a Ca(2+) release channel on the endoplasmic reticulum, generates a dysregulated channel, which may contribute to aberrant Ca(2+) signaling and neurodegeneration in disease states. However, the specific effects of InsP(3) R1 proteolysis on neuronal Ca(2+) homeostasis are unknown, as are the functional contributions of this pathway to neuronal death. This study evaluates the consequences of calpain-mediated InsP(3) R1 proteolysis on neuronal Ca(2+) signaling and survival using adeno-associated viruses to express a recombinant cleaved form of the channel (capn-InsP(3) R1) in rat primary cortical neurons. Here, we demonstrate that expression of capn-InsP(3) R1 in cortical cultures reduced cellular viability. This effect was associated with increased resting cytoplasmic Ca(2+) concentration ([Ca(2+) ](i) ), increased [Ca(2+) ](i) response to glutamate, and enhanced sensitivity to excitotoxic stimuli. Together, our results demonstrate that InsP(3) R1 proteolysis disrupts neuronal Ca(2+) homeostasis, and potentially acts as a feed-forward pathway to initiate or execute neuronal death.  相似文献   

4.
Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimer?s disease.  相似文献   

5.
Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity   总被引:33,自引:0,他引:33  
Arundine M  Tymianski M 《Cell calcium》2003,34(4-5):325-337
Excitotoxicity contributes to neuronal degeneration in many acute CNS diseases, including ischemia, trauma, and epilepsy, and may also play a role in chronic diseases, such as amyotrophic lateral sclerosis (ALS). Key mediators of excitotoxic damage are Ca ions (Ca(2+)), which under physiological conditions govern a multitude of cellular processes, including cell growth, differentiation, and synaptic activity. Consequently, homeostatic mechanisms exist to maintain a low intracellular Ca(2+) ion concentration so that Ca(2+) signals remain spatially and temporally localized. This permits multiple independent Ca-mediated signaling pathways to occur in the same cell. In excitotoxicity, excessive synaptic release of glutamate can lead to the disregulation of Ca(2+) homeostasis. Glutamate activates postsynaptic receptors, including the ionotropic N-methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) proprionate (AMPA), and kainate receptors. Upon their activation, these open their associated ion channel to allow the influx of Ca(2+) and Na(+) ions. Although physiological elevations in intracellular Ca(2+) are salient to normal cell functioning, the excessive influx of Ca(2+) together with any Ca(2+) release from intracellular compartments can overwhelm Ca(2+)-regulatory mechanisms and lead to cell death. Although Ca(2+) disregulation is paramount to neurodegeneration, the exact mechanism by which Ca(2+) ions actually mediate excitotoxicity is less clear. One hypothesis outlined in this review suggests that Ca(2+)-dependent neurotoxicity occurs following the activation of distinct signaling cascades downstream from key points of Ca(2+) entry at synapses, and that triggers of these cascades are physically co-localized with specific glutamate receptors. Thus, we summarize the importance of Ca(2+) regulation in mammalian neurons and the excitotoxicity hypothesis, and focus on the molecular determinants of glutamate receptor-mediated excitotoxic mechanisms.  相似文献   

6.
Excitotoxic neuronal damage via over-activation of the NMDA receptor has been implicated in many neurodegenerative diseases. In vitro modeling of excitotoxic injury has shown that activation of G-protein coupled receptors (GPCRs) counteracts such injury through modulation of neuronal pro-survival pathways and/or NMDA receptor signaling. We have previously demonstrated that the GPCR APJ and its endogenous neuropeptide ligand apelin can protect neurons against excitotoxicity, but the mechanism(s) of this neuroprotection remain incompletely understood. We hypothesized that apelin can promote neuronal survival by activating pro-survival signaling as well as inhibiting NMDA receptor-mediated excitotoxic signaling cascades. Our results demonstrate that (i) apelin activates pro-survival signaling via inositol trisphosphate (IP(3) ), protein kinase C (PKC), mitogen-activated protein kinase kinase 1/2 (MEK1/2), and extracellular signal-regulated kinase-1/2 (ERK1/2) to protect against excitotoxicity, and (ii) apelin inhibits excitotoxic signaling by attenuating NMDA receptor and calpain activity, and by modulating NMDA receptor subunit NR2B phosphorylation at serine 1480. These studies delineate a novel apelinergic signaling pathway that concurrently promotes survival and limits NMDA receptor-mediated injury to protect neurons against excitotoxicity. Defining apelin-mediated neuroprotection advances our understanding of neuroprotective pathways and will potentially improve our ability to develop therapeutics for excitotoxicity-associated neurodegenerative disorders.  相似文献   

7.
Reversal of long term potentiation (LTP) may function to increase the flexibility and storage capacity of neuronal circuits; however, the underlying mechanisms remain incompletely understood. We show that depotentiation induced by low frequency stimulation (LFS) (2 Hz, 10 min, 1200 pulses) was input-specific and dependent on N-methyl-d-aspartate (NMDA) receptor activation. The ability of LFS to reverse LTP was mimicked by a brief application of NMDA. This NMDA-induced depotentiation was blocked by adenosine A(1) receptor antagonist. However, the reversal of LTP by LFS was unaffected by metabotropic glutamate receptor antagonism. This LFS-induced depotentiation was specifically prevented by protein phosphatase (PP)1 inhibitors, okadaic acid, and calyculin A but not by the PP2A or PP2B inhibitors. Furthermore, by using phosphorylation site-specific antibodies, we found that LFS-induced depotentiation is associated with a persistent dephosphorylation of the GluR1 subunit of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor at serine 831, a protein kinase C and calcium/calmodulin-dependent protein kinase II (CaMKII) substrate, but not at serine 845, a substrate of cAMP-dependent protein kinase. This effect was mimicked by bath-applied adenosine or NMDA and was specifically prevented by okadaic acid. Also, the increased phosphorylation of CaMKII at threonine 286 and the decreased PP activity seen with LTP were overcome by LFS, adenosine, or NMDA application. These results suggest that LFS erases LTP through an NMDA receptor-mediated activation of PP1 to dephosphorylate amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and CaMKII in the CA1 region of the hippocampus.  相似文献   

8.
In this study, we investigated the effects of NMDA receptor antagonists on calcium transients induced by a single 2-min preconditioning anoxia (PA) in rat olfactory cortical slices, and on the ability of PA to prevent pathological calcium overload induced by subsequent 10-min test anoxia (TA). Relative changes in the intracellular Ca(2+) concentration (Ca(i)) and in the level of Ca(2+) bound to intracellular hydrophobic domains (Ca(b)) were monitored using fura-2 and chlortetracycline, respectively. Our results confirmed that TA induces prominent long-lasting increases in Ca(i) and Ca(b), reflecting cellular calcium overload. It was found that PA produces moderate increases in both Ca(2+) pools and prevents Ca(2+) overload induced by TA carried out 90 min later. Calcium transients and the protective effects of PA were significantly suppressed in slices treated with NMDA receptor antagonists during and 30 min after PA. These results indicate that moderate activation of the NMDA receptors participates in the mechanism of the PA-induced anoxic tolerance of cortical neurons.  相似文献   

9.
Kinases and phosphatases act antagonistically to maintain physiological phosphorylation/dephosphorylation at numerous intracellular sites critical for neuronal signalling. In this study, it was found that inhibition of serine/threonine phosphatases by exposure of hippocampal slices to okadaic acid (OA) or cantharidin (CA; 100 nmol/L) for 2 h resulted in reduced basal synaptic transmission and blocked the induction of synaptic plasticity in the form of long-term potentiation as determined by electrophysiological analysis. Fura-2 Ca(2+) imaging revealed a bidirectional modulation of N-methyl-D-aspartate (NMDA) -mediated Ca(2+) responses and reduced KCl-mediated Ca(2+) responses in neonatal cultured hippocampal neurons after phosphatase inhibition. While OA inhibited NMDA-induced Ca(2+) influx both acutely and after incubation, CA-enhanced receptor-mediated Ca(2+) signalling at low concentrations (1 nmol/L) but reduced NMDA and KCl-mediated Ca(2+) responses at higher concentrations (100 nmol/L). Changes in Ca(2+) signalling were accompanied by increased phosphorylation of cytoskeletal proteins tau and neurofilament and the NMDA receptor subunit NR1 in selective treatments. Incubation with OA (100 nmol/L) also led to the disruption of the microtubule network. This study highlights novel signalling effects of prolonged inhibition of protein phosphatases and suggests reduced post-synaptic signalling as a major mechanism for basal synaptic transmission and long-term potentiation impairments.  相似文献   

10.
Glutamate receptor overactivation induces excitotoxic neuronal death, but the contribution of glutamate receptor subtypes to this excitotoxicity is unclear. We have previously shown that excitotoxicity by NMDA receptor overactivation is associated with choline release and inhibition of phosphatidylcholine synthesis. We have now investigated whether the ability of non-NMDA ionotropic glutamate receptor subtypes to induce excitotoxicity is related to the ability to inhibit phosphatidylcholine synthesis. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced a concentration-dependent increase in extracellular choline and inhibited phosphatidylcholine synthesis when receptor desensitization was prevented. Kainate released choline and inhibited phosphatidylcholine synthesis by an action at AMPA receptors, because these effects of kainate were blocked by the AMPA receptor antagonist LY300164. Selective activation of kainate receptors failed to release choline, even when kainate receptor desensitization was prevented. The inhibition of phosphatidylcholine synthesis evoked by activation of non-desensitizing AMPA receptors was followed by neuronal death. In contrast, specific kainate receptor activation, which did not inhibit phosphatidylcholine synthesis, did not produce neuronal death. Choline release and inhibition of phosphatidylcholine synthesis were induced by AMPA at non-desensitizing AMPA receptors well before excitotoxicity. Furthermore, choline release by AMPA required the entry of Ca(2+) through the receptor channel. Our results show that AMPA, but not kainate, receptor overactivation induces excitotoxic cell death, and that this effect is directly related to the ability to inhibit phosphatidylcholine synthesis. Moreover, these results indicate that inhibition of phosphatidylcholine synthesis is an early event of the excitotoxic process, downstream of glutamate receptor-mediated Ca(2+) overload.  相似文献   

11.
7-Ketocholesterol is a component of oxidized LDL, which plays a central role in atherosclerosis. It is a potent inducer of cell death towards a wide number of cells involved in atherosclerosis. In this study, it is reported that 7-ketocholesterol treatment induces an increase of cytosolic-free Ca(2+) in THP-1 monocytic cells. This increase is correlated with the induction of cytotoxicity as suggested from experiments using the Ca(2+) channel blockers verapamil and nifedipine. This 7-ketocholesterol-induced apoptosis appears to be associated with the dephosphorylation of serine 75 and serine 99 of the proapoptotic protein Bcl-2 antagonist of cell death (BAD). We demonstrated that this dephosphorylation results mainly from the activation of calcium-dependent phosphatase calcineurin by the oxysterol-induced increase in Ca(2+). Moreover, this Ca(2+) increase appears related to the incorporation of 7-ketocholesterol into lipid raft domains of the plasma membrane, followed by the translocation of transient receptor potential calcium channel 1, a component of the store operated Ca(2+) entry channel, to rafts.  相似文献   

12.
Protein dephosphorylation by protein phosphatase 1 (PP1), acting in concert with protein kinase C (PKC) and protein kinase A (PKA), is a pivotal regulatory mechanism of protein phosphorylation. Isolated rat cardiac myofibrils phosphorylated by PKC/PKA and dephosphorylated by PP1 were used in determining dephosphorylation specificities, Ca(2+)-stimulated Mg(2+)ATPase activities, and Ca(2+) sensitivities. In reconstituted troponin (Tn) complex, PP1 displayed distinct substrate specificity in dephosphorylation of TnT preferentially to TnI, in vitro. In situ phosphorylation of cardiomyocytes with calyculin A, a protein phosphatase inhibitor, resulted in an increase in the phosphorylation stiochiometry of TnT (0.3 to 0.5 (67%)), TnI (2.6 to 3.6 (38%)), and MLC2 (0.4 to 1.7 (325%)). These results further confirmed that though MLC2 is the preferred target substrate for protein phosphatase in the thick filament, the Tn complex (TnI and TnT) from thin filament and C-protein in the thick filament are also protein phosphatase substrates. Our in vitro dephosphorylation experiments revealed that while PP1 differentially dephosphorylated within TnT at multiple sites, TnI was uniformly dephosphorylated. Phosphopeptide maps from the in vitro experiments show that TnT phosphopeptides at spots 4A and 4B are much more resistant to PP1 dephosphorylation than other TnT phosphopeptides. Mg(2+)ATPase assays of myofibrils phosphorylated by PKC/PKA and dephosphorylated by PP1 delineated that while PKC and PKA phosphorylation decreased the Ca(2+)-stimulated Mg(2+)ATPase activities, dephosphorylation antagonistically restored it. PKC and PKA phosphorylation decreased Ca(2+) sensitivity to 3.6 microM and 5.0 microM respectively. However, dephosphorylation restored the Mg(2+)ATPase activity of PKC (99%) and PKA (95%), along with the Ca(2+) sensitivities (3.3 microM and 3.0 microM, respectively).  相似文献   

13.
Xu K  Tavernarakis N  Driscoll M 《Neuron》2001,31(6):957-971
In C. elegans, a hyperactivated MEC-4(d) ion channel induces necrotic-like neuronal death that is distinct from apoptosis. We report that null mutations in calreticulin suppress both mec-4(d)-induced cell death and the necrotic cell death induced by expression of a constitutively activated Galpha(S) subunit. RNAi-mediated knockdown of calnexin, mutations in the ER Ca(2+) release channels unc-68 (ryanodine receptor) or itr-1 (inositol 1,4,5 triphosphate receptor), and pharmacological manipulations that block ER Ca(2+) release also suppress death. Conversely, thapsigargin-induced ER Ca(2+) release can restore mec-4(d)-induced cell death when calreticulin is absent. We conclude that high [Ca(2+)](i) is a requirement for necrosis in C. elegans and suggest that an essential step in the death mechanism is release of ER-based Ca(2+) stores. ER-driven Ca(2+) release has previously been implicated in mammalian necrosis, suggesting necrotic death mechanisms may be conserved.  相似文献   

14.
Inositol 1,4,5-trisphosphate (InsP(3)) and cAMP are the two second messengers that play an important role in neuronal signaling. Here, we investigated the interactions of InsP(3)- and cAMP-mediated signaling pathways activated by dopamine in striatal medium spiny neurons (MSN). We found that in approximately 40% of the MSN, application of dopamine elicited robust repetitive Ca(2+) transients (oscillations). In pharmacological experiments with specific agonists and antagonists, we found that the observed Ca(2+) oscillations were triggered by activation of D1 class dopamine receptors (DARs). We further demonstrated that activation of phospholipase C was required for induction of dopamine-induced Ca(2+) oscillations and that maintenance of dopamine-evoked Ca(2+) oscillations required both Ca(2+) influx and Ca(2+) mobilization from internal Ca(2+) stores. In "priming" experiments with a type 2 5-hydroxytryptamine receptor agonist, we have shown a likely role for calcyon in coupling D1 class DARs with Ca(2+) oscillations in MSN. In experiments with the DAR-specific agonist SKF83959, we discovered that phospholipase C activation alone could not account for dopamine-induced Ca(2+) oscillations. We further demonstrated that direct activation of protein kinase A by 8-bromo-cAMP or inhibition of protein phosphatase-1 (PP1) or calcineurin (PP2B) resulted in elevation of basal Ca(2+) levels in MSN, but not in Ca(2+) oscillations. In experiments with competitive peptides, we have shown an importance of type 1 InsP(3) receptor association with PP1alpha and with AKAP9.protein kinase A for dopamine-induced Ca(2+) oscillations. In experiments with MSN from DARPP-32 knock-out mice, we demonstrated a regulatory role of DARPP-32 in dopamine-induced Ca(2+) oscillations. Our results indicate that, following D1 class DAR activation, InsP(3) and cAMP signaling pathways converge on the type 1 InsP(3) receptor, resulting in Ca(2+) oscillations in MSN.  相似文献   

15.
Cerebral ischaemia is associated with brain damage and inhibition of neuronal protein synthesis. A deficit in neuronal metabolism and altered excitatory amino acid release may both contribute to those phenomena. In the present study, we demonstrate that both NMDA and metabolic impairment by 2-deoxyglucose or inhibitors of mitochondrial respiration inhibit protein synthesis in cortical neurons through the phosphorylation of eukaryotic elongation factor (eEF-2), without any change in phosphorylation of initiation factor eIF-2alpha. eEF-2 kinase may be activated both by Ca(2+)-independent AMP kinase or by an increase in cytosolic Ca2+. Although NMDA decreases ATP levels in neurons, only the effects of 2-deoxyglucose on protein synthesis and phosphorylation of elongation factor eEF-2 were reversed by Na(+) pyruvate. Protein synthesis inhibition by 2-deoxyglucose was not as a result of a secondary release of glutamate from cortical neurons as it was not prevented by the NMDA receptor antagonist 5-methyl-10,11-dihydro-5H-dibenzo-(a,d)-cyclohepten-5,10-imine hydrogen maleate (MK 801), nor to an increase in cytosolic-free Ca2+. Conversely, 2-deoxyglucose likely activates eEF-2 kinase through a process involving phosphorylation by AMP kinase. In conclusion, we provide evidence that protein synthesis can be inhibited by NMDA and metabolic deprivation by two distinct mechanisms involving, respectively, Ca(2+)-dependent and Ca(2+)-independent eEF-2 phosphorylation.  相似文献   

16.
17.
Beta-amyloid protein is thought to underlie the neurodegeneration associated with Alzheimer's disease by inducing Ca(2+)-dependent apoptosis. Elevated neuronal expression of the proinflammatory cytokine interleukin-1beta is an additional feature of neurodegeneration, and in this study we demonstrate that interleukin-1beta modulates the effects of beta-amyloid on Ca(2+) homeostasis in the rat cortex. beta-Amyloid-(1-40) (1 microM) caused a significant increase in (45)Ca(2+) influx into rat cortical synaptosomes via activation of L- and N-type voltage-dependent Ca(2+) channels and also increased the amplitude of N- and P-type Ca(2+) channel currents recorded from cultured cortical neurons. In contrast, interleukin-1beta (5 ng/ml) reduced the (45)Ca(2+) influx into cortical synaptosomes and inhibited Ca(2+) channel activity in cultured cortical neurons. Furthermore, the stimulatory effects of beta-amyloid protein on Ca(2+) influx were blocked following exposure to interleukin-1beta, suggesting that interleukin-1beta may govern neuronal responses to beta-amyloid by regulating Ca(2+) homeostasis.  相似文献   

18.
Zn(2+) plays an important role in diverse physiological processes, but when released in excess amounts it is potently neurotoxic. In vivo trans-synaptic movement and subsequent post-synaptic accumulation of intracellular Zn(2+) contributes to the neuronal injury observed in some forms of cerebral ischemia. Zn(2+) may enter neurons through NMDA channels, voltage-sensitive calcium channels, Ca(2+)-permeable AMPA/kainate (Ca-A/K) channels, or Zn(2+)-sensitive membrane transporters. Furthermore, Zn(2+) is also released from intracellular sites such as metallothioneins and mitochondria. The mechanisms by which Zn(2+) exerts its potent neurotoxic effects involve many signaling pathways, including mitochondrial and extra-mitochondrial generation of reactive oxygen species (ROS) and disruption of metabolic enzyme activity, ultimately leading to activation of apoptotic and/or necrotic processes. As is the case with Ca(2+), neuronal mitochondria take up Zn(2+) as a way of modulating cellular Zn(2+) homeostasis. However, excessive mitochondrial Zn(2+) sequestration leads to a marked dysfunction of these organelles, characterized by prolonged ROS generation. Intriguingly, in direct comparison to Ca(2+), Zn(2+) appears to induce these changes with a considerably greater degree of potency. These effects are particularly evident upon large (i.e., micromolar) rises in intracellular Zn(2+) concentration ([Zn(2+)](i)), and likely hasten necrotic neuronal death. In contrast, sub-micromolar [Zn(2+)](i) increases promote release of pro-apoptotic factors, suggesting that different intensities of [Zn(2+)](i) load may activate distinct pathways of injury. Finally, Zn(2+) homeostasis seems particularly sensitive to the environmental changes observed in ischemia, such as acidosis and oxidative stress, indicating that alterations in [Zn(2+)](i) may play a very significant role in the development of ischemic neuronal damage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号