首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far. Of 10 different transgenic bushes carrying a complete Tnt1 containing T-DNA, eight contained multiple transposed copies of Tnt1. The number of transposed copies of the element per plant was particularly high, the smallest number being 28. Tnt1 transposition in lettuce can be induced by a very simple in vitro culture protocol. Tnt1 insertions were stable in the progeny of the primary transformants and could be segregated genetically. Characterization of the sequences flanking some insertion sites revealed that Tnt1 often inserted into genes. The progeny of some primary transformants showed phenotypic alterations due to recessive mutations. One of these mutations was due to Tnt1 insertion in the gibberellin 3beta-hydroxylase gene. Taken together, these results indicate that Tnt1 is a powerful tool for insertion mutagenesis especially in plants with a large genome.  相似文献   

7.
8.
Distribution dynamics of the Tnt1 retrotransposon in tobacco   总被引:1,自引:0,他引:1  
Retrotransposons contribute significantly to the size, organization and genetic diversity of plant genomes. Although many retrotransposon families have been reported in plants, to this day, the tobacco Tnt1 retrotransposon remains one of the few elements for which active transposition has been shown. Demonstration that Tnt1 activation can be induced by stress has lent support to the hypothesis that, under adverse conditions, transposition can be an important source of genetic variability. Here, we compared the insertion site preference of a collection of newly transposed and pre-existing Tnt1 copies identified in plants regenerated from protoplasts or tissue culture. We find that newly transposed Tnt1 copies are targeted within or close to host gene coding sequences and that the distribution of pre-existing insertions does not vary significantly from this trend. Therefore, in spite of their potential to disrupt neighboring genes, insertions within or near CDS are not preferentially removed with age. Elimination of Tnt1 insertions within or near coding sequences may be relaxed due to the polyploid nature of the tobacco genome. Tnt1 insertions within or near CDS are thus better tolerated and can putatively contribute to the diversification of tobacco gene function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We studied the evolution of the tobacco Tnt1 retrotransposon by analyzing Tnt1 partial sequences containing both coding domains and U3 regulatory sequences obtained from a number of Nicotiana species. We detected three different subfamilies of Tnt1 elements, Tnt1A, Tnt1B, and Tnt1C, that differ completely in their U3 regions but share conserved flanking coding and LTR regions. U3 divergence between the three subfamilies is found in the region that contains the regulatory sequences that control the expression of the well-characterized Tnt1-94 element. This suggests that expression of the three Tnt1 subfamilies might be differently regulated. The three Tnt1 subfamilies were present in the Nicotiana genome at the time of species divergence, but have evolved independently since then in the different genomes. Each Tnt1 subfamily seems to have conserved its ability to transpose in a limited and different number of Nicotiana species. Our results illustrate the high variability of Tnt1 regulatory sequences. We propose that this high sequence variability could allow these elements to evolve regulatory mechanisms in order to optimize their coexistence with their host genome.   相似文献   

10.
11.
Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells.  相似文献   

12.
13.
The tobacco (Nicotiana tabacum) retrotransposon Tnt1 was introduced into Arabidopsis thaliana. In this heterologous host plant species, Tnt1 undergoes an RNA-mediated transposition and creates a 5 bp duplication at the insertion sites. This is the first report of transposition of a retrotransposon after introduction into a heterologous host species. Tnt1 transposed during in vitro regeneration of transformed A.thaliana, but no transposition event was detected as happening in T2 and T3 generation plants. Newly synthesized copies of Tnt1 can integrate into coding regions of the host DNA. Our results open up the possibility of using Tnt1 as a new tool for insertional mutagenesis and functional analysis of plant genomes, in addition to the strategies of T-DNA and transposon tagging.  相似文献   

14.
15.
16.
Retroviral replication is a very error-prone process. Replication of retroviruses gives rise to populations of closely related but different genomes referred to as ‘quasispecies’. This huge swarm of different sequences constitutes a reservoir of potentially useful genomes in case of an environmental change, endowing retroviruses with extreme adaptability. Retrotransposons are mobile genetic elements closely related to retroviruses, and retrotransposition is as error prone as retroviral replication. The Tnt1 retrotransposon is present in hundreds of copies in the genome of tobacco that show a high level of sequence heterogeneity. When Tnt1 is expressed, its RNA is not a single sequence but a population of sequences displaying a quasispecies-like structure. This population structure gives to Tnt1, as in the case of retroviruses, a high sequence plasticity and an adaptive capacity. We propose this adaptivity as the major reason for Tnt1 maintenance in Nicotiana genomes and we discuss in this paper the importance of sequence variability for Tnt1 evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Retroviruses consist of populations of different but closely related genomes referred to as quasispecies. A high mutation rate coupled with extremely rapid replication cycles allows these sequences to be highly interconnected in a rapid equilibrium. It is not known if other retroelements can show a similar population structure. We show here that when the tobacco Tnt1 retrotransposon is expressed, its RNA is not a unique sequence but a population of different but closely related sequences. Nevertheless, this highly variable population is not in a rapid equilibrium and could not be considered as a quasispecies. We have thus named the structure presented by Tnt1 RNA quasispecies-like. We show that the expression of Tnt1 in different situations gives rise to different populations of Tnt1 RNA sequences, suggesting an adaptive capacity for this element. The analysis of the variability within the total genomic population of Tnt1 elements shows that mutations frequently occur in important regulatory elements and that defective elements are often produced. We discuss the implications that this population structure could have for Tnt1 regulation and evolution.  相似文献   

19.
20.

Background  

Tnt1 was the first active plant retrotransposon identified in tobacco after nitrate reductase gene disruption. The Tnt1 superfamily comprises elements from Nicotiana (Tnt1 and Tto1) and Lycopersicon (Retrolyc1 and Tlc1) species. The study presented here was conducted to characterise Tnt1-related sequences in 20 wild species of Solanum and five cultivars of Solanum tuberosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号