首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood.

Results

We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status.

Conclusions

Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment.  相似文献   

4.
Given the genomic abundance and susceptibility to DNA methylation, interspersed repetitive sequences in the human genome can be exploited as valuable resources in genome-wide methylation studies. To learn about the relationships between DNA methylation and repeat sequences, we performed a global measurement of CpG dinucleotide frequencies for interspersed repetitive sequences and inferred germline methylation patterns in the human genome. Although extensive CpG depletion was observed for most repeat sequences, those in the proximity to CpG islands have been relatively removed from germline methylation being the potential source of germline activation. We also investigated the CpG depletion patterns of Alu pairs to see whether they might play an active role in germline methylation. Two kinds of Alu pairs, direct or inverted pairs classified according to the orientation, showed contrast CpG depletion patterns with respect to separating distance of Alus, i.e., as two Alu elements are more closely spaced in a pair, a higher extent of CpG depletion was observed in inverted orientation and vice versa for directly repetitive Alu pairs. This suggests that specific organization of repetitive sequences, such as inverted Alu pairs, might play a role in triggering DNA methylation consistent with a homology-dependent methylation hypothesis.  相似文献   

5.
Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups. We found distinct profiles in each group, with the high-risk group showing overall increased methylation compared with low- and mid-risk groups. The differentially methylated regions (DMRs) distinguishing cytogenetic risk groups of AML were enriched in the CpG island shores. Specific risk-group associated DMRs were located near genes previously known to play a role in AML or other malignancies, such as MN1, UHRF1, HOXB3, and HOXB4, as well as TRIM71, the function of which in cancer is not well characterized. These findings were verified by quantitative bisulfite pyrosequencing and by comparison with results available at the TCGA cancer genome browser. To explore the potential biological significance of the observed methylation changes, we correlated our findings with gene expression data available through the TCGA database. The results showed that decreased methylation at HOXB3 and HOXB4 was associated with increased gene expression of both HOXB genes specific to the mid-risk AML, while increased DNA methylation at DCC distinctive to the high-risk AML was associated with increased gene expression. Our results suggest that the differential impact of cytogenetic changes on AML prognosis may, in part, be mediated by changes in methylation.  相似文献   

6.
7.
DNA methylation is one of the most studied epigenetic marks in the human genome, with the result that the desire to map the human methylome has driven the development of several methods to map DNA methylation on a genomic scale. Our study presents the first comparison of two of these techniques - the targeted approach of the Infinium HumanMethylation450 BeadChip® with the immunoprecipitation and sequencing-based method, MeDIP-seq. Both methods were initially validated with respect to bisulfite sequencing as the gold standard and then assessed in terms of coverage, resolution and accuracy. The regions of the methylome that can be assayed by both methods and those that can only be assayed by one method were determined and the discovery of differentially methylated regions (DMRs) by both techniques was examined. Our results show that the Infinium HumanMethylation450 BeadChip® and MeDIP-seq show a good positive correlation (Spearman correlation of 0.68) on a genome-wide scale and can both be used successfully to determine differentially methylated loci in RefSeq genes, CpG islands, shores and shelves. MeDIP-seq however, allows a wider interrogation of methylated regions of the human genome, including thousands of non-RefSeq genes and repetitive elements, all of which may be of importance in disease. In our study MeDIP-seq allowed the detection of 15,709 differentially methylated regions, nearly twice as many as the array-based method (8070), which may result in a more comprehensive study of the methylome.  相似文献   

8.
9.
10.
11.
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.  相似文献   

12.
Molaro A  Hodges E  Fang F  Song Q  McCombie WR  Hannon GJ  Smith AD 《Cell》2011,146(6):1029-1041
During germ cell and preimplantation development, mammalian cells undergo nearly complete reprogramming of DNA methylation patterns. We profiled the methylomes of human and chimp sperm as a basis for comparison to methylation patterns of ESCs. Although the majority of promoters escape methylation in both ESCs and sperm, the corresponding hypomethylated regions show substantial structural differences. Repeat elements are heavily methylated in both germ and somatic cells; however, retrotransposons from several subfamilies evade methylation more effectively during male germ cell development, whereas other subfamilies show the opposite trend. Comparing methylomes of human and chimp sperm revealed a subset of differentially methylated promoters and strikingly divergent methylation in retrotransposon subfamilies, with an evolutionary impact that is apparent in the underlying genomic sequence. Thus, the features that determine DNA methylation patterns differ between male germ cells and somatic cells, and elements of these features have diverged between humans and chimpanzees.  相似文献   

13.
14.
Shen L  Kondo Y  Guo Y  Zhang J  Zhang L  Ahmed S  Shu J  Chen X  Waterland RA  Issa JP 《PLoS genetics》2007,3(10):2023-2036
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.  相似文献   

15.
16.
Tandem repeats in the CpG islands of imprinted genes   总被引:4,自引:0,他引:4  
Hutter B  Helms V  Paulsen M 《Genomics》2006,88(3):323-332
  相似文献   

17.
DNA demethylation induced by the methyl-CpG-binding domain protein MBD3   总被引:1,自引:0,他引:1  
Brown SE  Suderman MJ  Hallett M  Szyf M 《Gene》2008,420(2):99-106
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号