首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic polymorphisms of glutathione S-transferases (GSTs) and type 2 diabetes mellitus (T2DM) risk have been widely studied, however, the results were somewhat conflicting. To evaluate the association of GSTs (GSTM1, GSTT1 and GSTP1) gene polymorphisms with T2DM, a meta-analysis was performed before October, 2012. ORs were pooled according to random-effects model. There were a total of 1354/1666 (n = 9) cases/controls (studies) for GSTM1, 1271/1470 (n = 8) for GSTT1, and 1205/1250 (n = 7) for GSTM1. There were significant associations between GSTM1 polymorphism, GSTT1 polymorphism and T2DM in the contrast of present genotype vs. null genotype, with pooled OR = 1.99 (95%CI = 1.46–2.71) and OR = 1.61 (95%CI = 1.19–2.17), respectively. Yet no significant association of GSTP1 polymorphism and T2DM was showed. When stratified by ethnicity, the significant associations were also existed in Asians for GSTM1 and GSTT1, but not GSTP1. No publication bias but some extent of heterogeneity was observed. Finally, the accumulated evidence proved the obvious associations of GSTM1 and GSTT1 polymorphisms with an increased risk of T2DM.  相似文献   

3.
4.

BACKGROUND:

The ABCC8 gene which encodes the sulfonylurea receptor plays a major role in insulin secretion and is a potential candidate for type 2 diabetes. The -3c → t (rs1799854) and Thr759Thr (C → T, rs1801261) single nucleotide polymorphisms (SNPs) of the ABCC8 gene have been associated with type 2 diabetes in many populations. The present study was designed to investigate the association of these two SNPs in an Asian Indian population from south India.

MATERIALS AND METHODS:

A total of 1,300 subjects, 663 normal glucose tolerant (NGT) and 637 type 2 diabetic subjects were randomly selected from the Chennai Urban Rural Epidemiology Study (CURES). The -3c → t and Thr759Thr were genotyped in these subjects using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and a few variants were confirmed by direct sequencing.

RESULTS:

The frequency of the ‘t’ allele of the -3c → t SNP was found to be 0.27 in NGT and 0.29 in type 2 diabetic subjects (P = 0.44). There was no significant difference in the genotypic frequency between the NGT and type 2 diabetic group (P = 0.18). Neither the genotypic frequency nor the allele frequency of the Thr759Thr polymorphism was found to differ significantly between the NGT and type 2 diabetic groups.

CONCLUSION:

The -3c → t and the Thr759Thr polymorphisms of the ABCC8 gene were not associated with type 2 diabetes in this study. However, an effect of these genetic variants on specific unidentified sub groups of type 2 diabetes cannot be excluded.  相似文献   

5.
《Genomics》2019,111(4):980-985
Resistin, an adipokine, is involved in obesity and Type 2 Diabetes (T2D). The current study evaluates the association between RETN polymorphisms (−638 G/A, −420C/G & −358 G/A) and the risk towards T2D. Controls and T2D patients were enrolled from Gujarat, India. Polymorphisms of RETN were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. For the genotype-phenotype correlation analysis Fasting Blood Glucose (FBG), Body Mass Index (BMI) and plasma lipid profile were used. Plasma levels of resistin were assayed by ELISA. Our study suggests an association of RETN −420C/G polymorphism with T2D risk. The CC genotype of RETN −420C/G polymorphism was found to be associated with FBG, BMI, and total cholesterol. Plasma resistin levels were found to be significantly increased in diabetic patients as compared to controls. Our findings suggest −420C/G polymorphism of RETN as an important factor which could pose a powerful risk towards T2D susceptibility.  相似文献   

6.
We report a genomewide linkage study of type 2 diabetes (T2D [MIM 125853]) in the Icelandic population. A list of type 2 diabetics was cross-matched with a computerized genealogical database clustering 763 type 2 diabetics into 227 families. The diabetic patients and their relatives were genotyped with 906 microsatellite markers. A nonparametric multipoint linkage analysis yielded linkage to 5q34-q35.2 (LOD = 2.90, P=1.29 x 10(-4)) in all diabetics. Since obesity, here defined as body mass index (BMI) > or =30 kg/m(2), is a key risk factor for the development of T2D, we studied the data either independently of BMI or by stratifying the patient group as obese (BMI > or =30) or nonobese (BMI <30). A nonparametric multipoint linkage analysis yielded linkage to 5q34-q35.2 (LOD = 3.64, P=2.12 x (10)-5) in the nonobese diabetics. No linkage was observed in this region for the obese diabetics. Linkage analysis conditioning on maternal transmission to the nonobese diabetics resulted in a LOD score of 3.48 (P=3.12 x 10(-5)) in the same region, whereas conditioning on paternal transmission led to a substantial drop in the LOD score. Finally, we observed potential interactions between the 5q locus and two T2D susceptibility loci, previously mapped in other populations.  相似文献   

7.
8.
Significant evidence of linkage to type 2 diabetes (T2D) has been shown in a relatively broad region on chromosome 20q, where the hepatocyte nuclear factor-4alpha (HNF4A) has been noted as a positional candidate. To systematically evaluate genetic susceptibility to T2D in the relevant region, we examined the disease association by using 1145 SNPs in two-step screening in the Japanese population. The marker screening enabled us to identify significant disease association in the lipopolysaccharide binding protein (LBP) but not in the HNF4A locus. In a 17.7-Mb interval screened, the strongest association was identified for a SNP, rs2232592, located in the intron of LBP, with an estimated odds ratio of 1.73 (95% CI 1.30-2.31) (P=0.0002) in the whole study panel involving 675 case and 474 control subjects. Our data suggest that the LBP gene may confer genetic susceptibility to T2D and this warrants further replication study.  相似文献   

9.
10.
Recent publications have found an association between variants of exostosin 2 (EXT2) gene and the risk of type 2 diabetes in some population but not in others. In an attempt to address these inconsistencies, we investigated EXT2 variants in two independent cohorts, and conducted a literature-based meta-analysis. Through regression model, we assessed the relationship between the EXT2 single nucleotide polymorphisms (SNPs) (rs3740878, rs11037909 and rs1113132) and the risk of type 2 diabetes in Han Chinese population, including a total of 2,533 cases and 2,643 controls. We combined our data with that from previously published studies and performed a meta-analysis to evaluate the effect size of the gene. Consistent with some studies, we found marginal association for the rs3740878 (OR = 1.07, 95 % CI = 0.99, 1.16, p = 0.09), rs11037909 (OR = 1.07, 95 % CI = 0.99, 1.16, p = 0.08), and rs1113132 (OR = 1.08, 95 % CI = 1.00, 1.17, p = 0.06) in our 2 cohorts. Meta-analysis, comprising 9,224 type 2 diabetes and 10,484 controls, revealed that three SNPs (rs3740878, rs11037909 and rs1113132) in EXT2 were significantly associated with type 2 diabetes (ORs range from 1.06 to 1.07, p = 0.038, p = 0.008 and p = 0.005, respectively). Variation in the EXT2 locus appears to be associated with a small increase in the risk of type 2 diabetes. However, well-designed prospective studies with larger sample size and more ethnic groups are needed to further validate the results.  相似文献   

11.
Recently, a positional cloning study proposed that haplotypes at the calpain-10 locus (CAPN10) are associated with increased risk of type 2 diabetes, or non-insulin-dependent diabetes mellitus, in Mexican Americans, Finns, and Germans. To inform the interpretation of the original mapping results and to look for evidence for the action of natural selection on CAPN10, we undertook a population-based genotyping survey of the candidate susceptibility variants. First, we genotyped sites 43, 19, and 63 (the haplotype-defining variants previously proposed) and four closely linked SNPs, in 561 individuals from 11 populations from five continents, and we examined the linkage disequilibrium among them. We then examined the ancestral state of these sites by sequencing orthologous portions of CAPN10 in chimpanzee and orangutan (the identity of sites 43 and 19 was further investigated in a limited sample of other great apes and Old World and New World monkeys). Our survey suggests larger-than-expected differences in the distribution of CAPN10 susceptibility variants between African and non-African populations, with common, derived haplotypes in European and Asian samples (including one of two proposed risk haplotypes) being rare or absent in African samples. These results suggest a history of positive natural selection at the locus, resulting in significant geographic differences in polymorphism frequencies. The relationship of these differences to disease risk is discussed.  相似文献   

12.
13.
The association of the gene encoding calpain 10 with type 2 diabetes mellitus (T2DM) has been reported. In this study we aimed to evaluate the association of SNP-19,-44, and -63 polymorphisms of calpain 10 with type 2 diabetes and diabetic-related conditions, such as diabetic retinopathy, nephropathy, and neuropathy in a Turkish population. The study group included 202 patients (133 female and 69 male) with T2DM, while the control group included 80 nondiabetic people (44 female and 36 male). Genotyping was done by the polymerase chain reaction and restriction fragment length polymorphism method. Calpain 10 SNP-44 TC genotype was found to be significantly frequent in type 2 diabetic patients with respect to the control group (p < 0.01). Body mass index (BMI) was found to be significantly high in TC genotype with type 2 diabetic patients (p < 0.05). SNP-44 T allele frequency was found to be lower in type 2 diabetic patients compared with the controls (p < 0.01). We conclude that the calpain 10 SNP-44 gene polymorphism may be accepted as a risk factor in the development of T2DM and elevated BMI in type 2 diabetic patients in a Turkish population.  相似文献   

14.
15.
BackgroundThe Meta-Analysis of Glucose and Insulin related traits Consortium (MAGIC) recently identified 16 loci robustly associated with fasting glucose, some of which were also associated with type 2 diabetes. The purpose of our study was to explore the role of these variants in South Asian populations of Punjabi ancestry, originating predominantly from the District of Mirpur, Pakistan.Conclusions/SignificanceAlthough only the SLC30A8 rs11558471 SNP was nominally associated with fasting glucose in our study, the finding that 12 out of 16 SNPs displayed a direction of effect consistent with European studies suggests that a number of these variants may contribute to fasting glucose variation in individuals of South Asian ancestry. We also provide evidence for the first time in South Asians that alleles of SNPs in GLIS3 and ADCY5 may confer risk of type 2 diabetes.  相似文献   

16.
17.
Ⅱ型糖尿病是由基因和环境共同作用所引起的多基因遗传病,随着人类基因组计划的完成和单核苷酸多态性(single-nu-clcotide polymorphisms,SNP)扫描技术的发展,许多SNP位点被证实与Ⅱ型糖尿病相关,因此易感基因的检测是未来糖尿病预防和治疗的关键.本文主要介绍了目前Ⅱ型糖尿病易感基因的检测策略、方法、研究进展及今后的研究方向.  相似文献   

18.
19.
Patients with type 2 diabetes (T2D) are more susceptible to develop cardiovascular complications than non-diabetic subjects. Several studies have indicated a role of adiponectin gene in the increased coronary artery disease (CAD) risk in T2D patients. The data however is limited and have been inconsistent. In this study we examined the association of SNP45T>G and SNP276G>T of adiponectin gene with CAD risk in T2D patients in a Saudi population. A total of 418 type 2 diabetic patients were randomly recruited in this study from the RIYADH COHORT. Of the total diabetes patients, 123 were also diagnosed to have CAD, while the rest were control subjects. Anthropometric, clinical and biochemical parameters were measured by standard procedures. Genotyping of polymorphisms was carried out by PCR–RFLP analysis. Genotype distribution of SNP45T>G was significantly (P = 0.005) different between control and CAD subjects, while the distribution of SNP276G>T genotypes was comparable between the subjects. The SNP45T>G was significantly associated with risk of CAD [OR (95% CI), 4.7 (1.6–13.5), P < 0.003] but not SNP276G>T [OR (95% CI), 1.02 (0.53–1.9), P > 0.05]. The association of SNP45T>G with CAD risk remained significant even after adjusting for potential confounding factors [OR (95% CI), 7.2 (1.1–45.9), P < 0.05]. The SNP45T>G of adiponectin gene is an independent risk factor for CAD in T2D patients in a Saudi population. These findings support a role for adiponectin gene in the increased CAD risk in diabetes patients and are consistent with genetic heterogeneity in the association between adiponectin gene and coronary artery disease.  相似文献   

20.
Genome‐wide association studies have successfully identified over 70 loci associated with the risk of type 2 diabetes mellitus (T2DM) in multiple populations of European ancestry. However, the risk attributable to an individual variant is modest and does not yet provide convincing evidence for clinical utility. Association between these established genetic variants and T2DM in general populations is hitherto understudied in the isolated populations, such as the Uyghurs, resident in Hetian, far southern Xinjiang Uyghur Autonomous Region, China. In this case–control study, we genotyped 13 single‐nucleotide polymorphisms (SNPs) at 10 genes associated with diabetes in 130 cases with T2DM and 135 healthy controls of Uyghur, a Chinese minority ethnic group. Three of the 13 SNPs demonstrated significant association with T2DM in the Uyghur population. There were significant differences between the T2DM patients and controls in the risk allele distributions of rs3792267 (CAPN10) (P = 0.002), rs1501299 (APM1) (P = 0.017), and rs3760776 (FUT6) (P = 0.031). Allelic carriers of rs3792267‐A, rs1501299‐T, and rs3760776‐T had a 2.24‐fold [OR (95% CI): 1.35–3.71], 0.59‐fold [OR (95% CI): 0.39–0.91], 0.57‐fold [OR (95% CI): 0.34–0.95] increased risk for T2DM respectively. We further confirmed that the cumulative risk allelic scores calculated from the 13 susceptibility loci for T2DM differed significantly between the T2DM patients and controls (P = 0.001), and the effect of obesity/overweight on T2DM was only observed in the subjects with a combined risk allelic score under a value of 17. This study observed that the SNPs rs3792267 in CAPN10, rs1501299 in APM1, and rs3760776 in FUT6 might serve as potential susceptible biomarkers for T2DM in Uyghurs. The cumulative risk allelic scores of multiple loci with modest individual effects are also significant risk factors in Uyghurs for T2DM, particularly among non‐obese individuals. This is the first investigation having observed/found genetic variations on genetic loci functionally linked with glycosylation associated with the risk of T2DM in a Uyghur population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号