首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compartmentalization of skeletal muscle by multiple motor nerve branches, named as neuromuscular compartment (NMC), has been demonstrated in animals as well as humans. While different functional roles among individual NMCs were reported in the animal studies, no studies have clarified the region-specific functional role within a muscle related with NMCs arrangement in human skeletal muscle. It was reported that the rectus femoris (RF) muscle is innervated by two nerve branches attached at proximal and distal parts of the muscle. The purpose of the present study is to clarify the possible region-specific functional role in the human RF muscle. Multi-channel surface electromyography (SEMG) were recorded from the RF muscle by using 128 electrodes during two different submaximal isometric contractions that the muscle contributes, i.e. isometric knee extension and hip flexion, at 20%, 40%, 60% and 80% of maximal voluntary contraction (MVC). Results indicated that the central locus activation for the amplitude map of SEMG during hip flexion located at more proximal region compared with that during knee extension. Significant higher normalized root mean square (RMS) values were observed at the proximal region during the hip flexion in comparison to those at middle and distal regions at 60% and 80% of MVC (p<0.05). In while, significant higher normalized RMS values were demonstrated at the distal region comparing with that at the proximal region at 80% of MVC (p<0.05). The results of the present study suggest possible region-specific functional role in the human RF muscle.  相似文献   

2.
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.  相似文献   

3.
To examine the region specificity within the rectus femoris (RF) for knee extension and hip flexion force directions, three force components around the ankle were measured during intramuscular electrical stimulation applied to six parts of the RF: a proximal and medial part, a proximal and lateral part, a middle and medial part, a middle and lateral part, a distal and medial part, and a distal and lateral part. As a result, the exerted force directions in all of the subjects were variable in all regions, and the proximal region of the RF was the dominant contributor to the hip flexion moment. In addition, the force in the lateral region of the RF, rather than that in the medial region, denoted the lateral direction. These results suggest that divergent regions of muscle fibers within the RF are responsible for different functions in determining the force direction.  相似文献   

4.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

5.
The rectus femoris muscle flap is well known for its reliable anatomy, the ease with which it can be harvested, and its great versatility. As a pedicled or free flap, it is used to cover soft-tissue defects and to recreate motor function. Although the muscle is very reliable, it is not well respected because of its assumed donor-site morbidity, such as weakened knee extension force and decreased range of motion of the knee. To date, these clinical assumptions have only rarely been quantified in terms of objective scores, concerning force deficit and functional or aesthetic outcome. From 1995 to 2002, the authors treated 24 patients with pedicled rectus femoris muscle flaps. Fourteen patients were followed up. Follow-up time ranged from 3 to 56 months postoperatively. The results were evaluated by a standard questionnaire in which pain in relation to walking distance, subjective feeling of weakness, sensibility disorders, everyday function, and aesthetic aspects were assessed. Range of motion in the hip and the knee was measured. For objective verification of a decrease of maximal voluntary contraction force of the remaining quadriceps muscle and for detecting differences in true muscular capacity and voluntary activation, 10 patients with unilateral rectus femoris flaps were tested using the twitch interpolation technique. The authors' patients assessed the remaining function and the aesthetic result of the thigh as at least satisfactory. Two patients complained about pain and weakness in the thigh. Eight patients reported hypesthesia in the lateral suprapatellar region. The maximal voluntary contraction and true muscular capacity values were reduced by 21.8 percent and 18 percent, respectively, when compared with the healthy leg. The range of motion in the knee and hip was not influenced by muscle harvesting. The twitch interpolation technique revealed a mild voluntary activation deficit, probably caused by inhibitory regulation in the spinal cord. In conclusion, donor-site morbidity of the rectus femoris muscle flap is evident but well compensated. There is no decrease in active range of motion in the knee and hip. Patient satisfaction with the functional and aesthetic outcome was high.  相似文献   

6.
In vivo motion of the rectus femoris muscle after tendon transfer surgery   总被引:7,自引:0,他引:7  
Rectus femoris transfer surgery is performed to convert the rectus femoris muscle from a knee extensor to a knee flexor. In this surgery, the distal tendon of the rectus femoris is detached from the patella and reattached to one of the knee flexor tendons. The outcomes of this procedure are variable, and it is not known if the surgery successfully converts the muscle to a knee flexor. We measured the motion of muscle tissue within the rectus femoris and vastus intermedius during knee extension in 10 unimpaired control subjects (10 limbs) and 6 subjects (10 limbs) after rectus femoris transfer using cine phase-contrast magnetic resonance imaging. Displacements of the vastus intermedius during knee extension were similar between control and tendon transfer subjects. In the control subjects, the rectus femoris muscle consistently moved in the direction of the knee extensors and displaced more than the vastus intermedius. The rectus femoris also moved in the direction of the knee extensors in the tendon transfer subjects; however, the transferred rectus femoris displaced less than the vastus intermedius. These results suggest that the rectus femoris is not converted to a knee flexor after its distal tendon is transferred to the posterior side of the knee, but its capacity for knee extension is diminished by the surgery.  相似文献   

7.
This study sought to examine the shear modulus (i.e., an force index) of three quadriceps muscles [i.e., vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] during passive stretching to determine whether epimuscular myofascial force transmission occurs across muscles. Secondly, this study compared the shear modulus between the quadriceps muscles, in both proximal and distal regions. Twelve healthy individuals were assessed during a passive knee flexion maneuver between 0° and 90° of knee flexion with the hip in two positions: flexed (80°) vs. neutral (0°). Muscle electrical activity was also assessed during the testing. No differences were observed between the hip testing positions for myoelectric activity (p > 0.43), and for VL and VM shear modulus (p = 0.12–0.98). Similarly, there were no differences between the proximal and distal regions for all muscles (p = 0.42–0.93). RF showed a higher shear modulus with the hip in the neutral position (p = 0.004). With the hip flexed, the VL showed the greatest shear modulus among the tested muscles (p < 0.025); while with the hip in the neutral position, no differences were observed for shear modulus between VL and RF (p = 0.817). These findings suggest that epimuscular myofascial force transmission (at a muscle belly level) does not occur between the quadriceps muscles when passively flexing the knee until 90°. Whether epimuscular myofascial force transmission occurs in the quadriceps muscles bellies with greater muscle stretch (either through knee flexion or hip extension) remains to be examined.  相似文献   

8.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

9.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

10.
The purpose of this study was to determine if differences exist between the control strategies of two antagonist thigh muscles during knee flexion and extension muscular coactivation. Surface myoelectric signal (MES) of the quadriceps (rectus femoris) and the hamstrings (semitendinosus) were obtained from both muscles while performing step-wise increasing contractions during flexion and extension with the knee at 1.57 rad of flexion (90 degrees). The median frequency of the power density spectrum, which is related to the average muscle fiber action potential conduction velocity and therefore to motor unit recruitment, was calculated from each MES. The results suggest that, in all the subjects tested, when the muscle acts as antagonist most motor units are recruited up to 50% of the maximal voluntary force, whereas when the muscle acts as antagonist motor units are recruited up to 40% of the maximal voluntary force. The force range past 40–50% of the maximal force is also characterized by differences between the agonist/antagonist.  相似文献   

11.
PurposeThis study was designed to evaluate the effects of botulinum toxin type-A (BoNTA) injection of the rectus femoris (RF) muscle on the electromyographic activity of the knee flexor and extensor and on knee and hip kinematics during gait in patients with hemiparesis exhibiting a stiff-knee gait.MethodTwo gait analyses were performed on fourteen patients: before and four weeks after BoNTA injection. Spatiotemporal, kinematic and electromyographic parameters were quantified for the paretic limb.ResultsBoNTA treatment improved gait velocity, stride length and cadence with an increase of knee angular velocity at toe-off and maximal knee flexion in the swing phase. Amplitude and activation time of the RF and co-activation duration between the RF and biceps femoris were significantly decreased. The instantaneous mean frequency of RF was predominantly lower in the pre-swing phase.ConclusionsThe results clearly show that BoNTA modified the EMG amplitude and frequency of the injected muscle (RF) but not of the synergist and antagonist muscles. The reduction in RF activation frequency could be related to increased activity of slow fibers. The frequency analysis of EMG signals during gait appears to be a relevant method for the evaluation of the effects of BoNTA in the injected muscle.  相似文献   

12.
In an attempt to approach a system of isolated exercising muscle in humans, a model has been developed that enables the study of muscle activity and metabolism over the quadriceps femoris (QF) muscles while the rest of the body remains relaxed. The simplest version includes the subject sitting on a table with a rod connecting the ankle and the pedal arm of a bicycle ergometer placed behind the subject. Exercise is performed by knee extension from a knee angle of 90 to approximately 170 degrees while flywheel momentum repositions the relaxed leg during flexion. Experiments where electromyographic recordings have been taken from biceps femoris, gastrocnemius, tibialis anterior, and other muscles in addition to QF indicate that only the QF is active and that there is an equal activation of the lateral, medial, and rectus femoris heads relative to maximum. Furthermore, virtually identical pulmonary O2 uptake (Vo2) during and without application of a pressure cuff below the knee emphasizes the inactivity of the lower leg muscles. The advantages of the model are that all external work can be localized to a single muscle group suitable for taking biopsies and that the blood flow in and sampling from the femoral vein are representative of the active muscles. Thus all measurements can be closely related to changes in the working muscle. Using this model we find that a linear relationship exists between external work and pulmonary Vo2 over the submaximal range and the maximal Vo2 per kilogram of muscle may be as much as twice as high as previously estimated.  相似文献   

13.
Hamstring muscle function during knee flexion has been linked to hamstring injury and performance. However, it is unclear whether knee flexion alone (KF) requires similar hamstring electromyography (EMG) activity pattern to simultaneous hip extension and knee flexion (HE-KF), a combination that occurs in the late swing phase of sprinting. This study examined whether HE-KF maximal voluntary isometric contraction (MVIC) evokes higher (EMG) activity in biceps femoris long head (BFlh) and semitendinosus (ST) than KF alone. Effects of shank rotation angles were also tested. Twenty-one males performed the above-mentioned MVICs while EMG activity was measured along ST and BFlh. Conditions were compared using a one-way mixed functional ANOVA model under a fully Bayesian framework. Higher EMG activity was found in HE-KF in all shank rotation positions than in KF in the middle region of BFlh (highest in the 9th channel, by 0.022 mV [95%CrI 0.014 to 0.030] in neutral shank position). For ST, this was only observed in the neutral shank position and in the most proximal channel (by 0.013 mV [95%CrI 0.001 to 0.025]). We observed muscle- and region-specific responses to HE-KF. Future studies should examine whether hamstring activation in this task is related to injury risk and sprint performance.  相似文献   

14.
The purpose of this study was to evaluate whether and how isometric multijoint leg extension strength can be used to assess athletes' muscular capability within the scope of strength diagnosis. External reaction forces (Fext) and kinematics were measured (n = 18) during maximal isometric contractions in a seated leg press at 8 distinct joint angle configurations ranging from 30 to 100° knee flexion. In addition, muscle activation of rectus femoris, vastus medialis, biceps femoris c.l., gastrocnemius medialis, and tibialis anterior was obtained using surface electromyography (EMG). Joint torques for hip, knee, and ankle joints were computed by inverse dynamics. The results showed that unilateral Fext decreased significantly from 3,369 ± 575 N at 30° knee flexion to 1,015 ± 152 N at 100° knee flexion. Despite maximum voluntary effort, excitation of all muscles as measured by EMG root mean square changed with knee flexion angles. Moreover, correlations showed that above-average Fext at low knee flexion is not necessarily associated with above-average Fext at great knee flexion and vice versa. Similarly, it is not possible to deduce high joint torques from high Fext just as above-average joint torques in 1 joint do not signify above-average torques in another joint. From these findings, it is concluded that an evaluation of muscular capability by means of Fext as measured for multijoint leg extension is strongly limited. As practical recommendation, we suggest analyzing multijoint leg extension strength at 3 distinct knee flexion angles or at discipline-specific joint angles. In addition, a careful evaluation of muscular capacity based on measured Fext can be done for knee flexion angles ≥ 80°. For further and detailed analysis of single muscle groups, the use of inverse dynamic modeling is recommended.  相似文献   

15.
Rectus femoris transfer is frequently performed to treat stiff-knee gait in subjects with cerebral palsy. In this surgery, the distal tendon is released from the patella and re-attached to one of several sites, such as the sartorius or the iliotibial band. Surgical outcomes vary, and the mechanisms by which the surgery improves knee motion are unclear. The purpose of this study was to clarify the mechanism by which the transferred muscle improves knee flexion by examining three types of transfers. Muscle-actuated dynamic simulations were created of ten children diagnosed with cerebral palsy and stiff-knee gait. These simulations were altered to represent surgical transfers of the rectus femoris to the sartorius and the iliotibial band. Rectus femoris transfers in which the muscle remained attached to the underlying vasti through scar tissue were also simulated by reducing but not eliminating the muscle's knee extension moment. Simulated transfer to the sartorius, which converted the rectus femoris’ knee extension moment to a flexion moment, produced 32±8° improvement in peak knee flexion on average. Simulated transfer to the iliotibial band, which completely eliminated the muscle's knee extension moment, predicted only slightly less improvement in peak knee flexion (28±8°). Scarred transfer simulations, which reduced the muscle's knee extension moment, predicted significantly less (p<0.001) improvement in peak knee flexion (14±5°). Simulations revealed that improved knee flexion following rectus femoris transfer is achieved primarily by reduction of the muscle's knee extension moment. Reduction of scarring of the rectus femoris to underlying muscles has the potential to enhance knee flexion.  相似文献   

16.
This study examined the effect of hip flexion angle on the stiffness of the adductor longus (AL) muscle during isometric hip flexion. Seventeen men were recruited. Ten participants performed submaximal voluntary contraction at 0%, 25%, 50%, and 75% of maximal voluntary contraction (MVC) during isometric hip flexion after performing MVC at 0°, 40°, and 80° of hip flexion. Seven participants performed submaximal voluntary tasks during isometric hip extension in addition to hip flexion task. The shear modulus of the AL muscle was used as the index of muscle stiffness, and was measured using ultrasound shear-wave elastography during the tasks at each contraction intensity for each hip flexion angle. During hip flexion, the shear modulus of the AL muscle was higher at 0° than at 40° and 80° of hip flexion at each contraction intensity (p < 0.016). Conversely, a significant effect was not found among hip flexion angle during hip extension at 75% of MVC (p = 0.867). These results suggest that mechanical stress of the AL muscle may be higher at 0° of hip flexion during isometric hip flexion.  相似文献   

17.
Lengths of muscle tendon complexes of the quadriceps femoris muscle and some of its heads, biceps femoris and gastrocnemius muscles, were measured for six limbs of human cadavers as a function of knee and hip-joint angles. Length-angle curves were fitted using second degree polynomials. Using these polynomials the relationships between knee and hip-joint angles and moment arms were calculated. The effect of changing the hip angle on the biceps femoris muscle length is much larger than that of changing the knee angle. For the rectus femoris muscle the reverse was found. The moment arm of the biceps femoris muscle was found to remain constant throughout the whole range of knee flexion as was the case for the medial part of the vastus medialis muscle. Changes in the length of the lateral part of the vastus medialis muscle as well as the medial part of the vastus lateralis muscle are very similar to those of vastus intermedius muscle to which they are adjacent, while those changes in the length of the medial part of the vastus medialis muscle and the lateral part of the vastus lateralis muscle, which are similar to each other, differ substantially from those of the vastus intermedius muscle. Application of the results to jumping showed that bi-articular rectus femoris and biceps femoris muscles, which are antagonists, both contract eccentrically early in the push off phase and concentrically in last part of this phase.  相似文献   

18.
With the aim of comparing kinematic and neuromuscular parameters of Bandal Chagui kicks between 7 elite and 7 subelite taekwondo athletes, nine Bandal Chaguis were performed at maximal effort in a selective reaction time design, simulating the frequency of kicks observed in taekwondo competitions. Linear and angular leg velocities were recorded through 3D motion capture system. Ground reaction forces (GRF) were evaluated by a force platform, and surface electromyographic (sEMG) signals were evaluated in the vastus lateralis, biceps femoris, rectus femoris, tensor fasciae lata, adductor magnus, gluteus maximus, gluteus medius, and gastrocnemius lateralis muscles of the kicking leg. sEMG data were processed to obtain the cocontraction indices (CI) of antagonist vs. overall (agonist and antagonist) muscle activity. CI was measured for the hip and knee, in flexion and extension, and for hip abduction. Premotor, reaction (kinetic and kinematic), and kicking times were evaluated. Timing parameters, except kinetic reaction time, were faster in elite athletes. Furthermore, CI and angular velocity during knee extension, foot and knee linear velocity, and horizontal GRF were significantly higher in elite than in subelite athletes. In conclusion, selected biomechanical parameters of Bandal Chagui appear to be useful in controlling the training status of the kick and in orienting the training goal of black belt competitors.  相似文献   

19.
This study tested the hypothesis that the effect of hip joint angle on concentric knee extension torque depends on knee joint angle during a single knee extension task. Twelve men performed concentric knee extensions in fully extended and 80° flexed hip positions with maximal effort. The angular velocities were set at 30° s−1 and 180° s−1. The peak torque and torques attained at 30°, 50°, 70° and 90° (anatomical position = 0°) of the knee joint were compared between the two hip positions. Muscle activations of the vastus lateralis, medialis, rectus femoris and biceps femoris were determined using surface electromyography. The peak torque was significantly greater in the flexed than in the extended hip position irrespective of angular velocity. The torques at 70° and 90° of the knee joint at both angular velocities and at 50° at 180° s−1 were significantly greater in the flexed than in the extended hip position, whereas corresponding differences were not found at 30° (at either angular velocity) and 50° (at 30° s−1) of the knee joint. No effect of hip position on muscle activation was observed in any muscle. These results supported our hypothesis and may be related to the force–length and force–velocity characteristics of the rectus femoris.  相似文献   

20.
Cerebral palsy is a condition that results in varying degrees of functional deficits. The goal of this study was to develop an objective measure of muscle activity during a prescribed voluntary motor task in non-ambulatory children with spastic cerebral palsy. While performing a simultaneous hip/knee flexion task from the supine position, followed by return to the starting position, electromyographic and kinematic data were obtained from the right leg of eight children before and after selective dorsal rhizotomy and compared with eight age-matched controls. The electromyographic and kinematic data were combined to determine for each muscle of interest (tibialis anterior, soleus, vastus lateralis, biceps femoris) the percentage of the movement cycle for which the muscle was acting concentrically, eccentrically, isometrically or was considered inactive. Averaged over the four muscles, isometric activity decreased by 38% post-op and the time the muscles were inactive increased by 37% following surgery. The percentages of concentric and eccentric activity did not differ significantly between pre- and post-op conditions. Post-operatively, the percentage muscle activity patterns of the children with cerebral palsy more closely resembled that of the control children: averaged across all muscles and contraction types, the difference between the control children and the children with cerebral palsy was reduced by 50% following surgery. This measurement technique indicates promise as a method for quantifying muscle activity during voluntary motor tasks in non-ambulatory children with cerebral palsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号